Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Initial code for wind field reconstruction from vorticity and divergence #3266

Open
wants to merge 89 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 87 commits
Commits
Show all changes
89 commits
Select commit Hold shift + click to select a range
f4914ff
added wind reconstruction from vorticity and divergence code
winash12 Nov 3, 2023
b34c706
added wind reconstruction from vorticity and divergence code
winash12 Nov 3, 2023
4d2ff00
added wind reconstruction from vorticity and divergence code
winash12 Nov 3, 2023
948815f
added wind reconstruction from vorticity and divergence code
winash12 Nov 3, 2023
47f1599
added wind reconstruction from vorticity and divergence code
winash12 Nov 3, 2023
ebf9879
Merge branch 'Unidata:main' into main
winash12 Nov 4, 2023
5479958
Merge branch 'Unidata:main' into main
winash12 Nov 7, 2023
3e6f96d
added code for wind field reconstruction from vorticity and divergence
winash12 Nov 8, 2023
52506b6
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 Nov 8, 2023
4845074
changed code comments
winash12 Nov 9, 2023
2eac3f3
removed all PEP8 messages
winash12 Nov 9, 2023
cd2b92b
Merge branch 'Unidata:main' into main
winash12 Nov 10, 2023
fc7d115
Merge branch 'Unidata:main' into main
winash12 Nov 16, 2023
b21ba83
Merge branch 'Unidata:main' into main
winash12 Dec 6, 2023
7888358
Merge branch 'Unidata:main' into main
winash12 Dec 11, 2023
cfd99c2
modified the doc file metpy.calc.rst
winash12 Dec 11, 2023
1d3b603
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 Dec 11, 2023
a09328a
modified kinematics.py to add extra line
winash12 Dec 11, 2023
93b68ca
Merge branch 'Unidata:main' into main
winash12 Dec 19, 2023
d7034c3
Merge branch 'Unidata:main' into main
winash12 Dec 29, 2023
a9ac9b2
Merge branch 'Unidata:main' into main
winash12 Jan 15, 2024
b94758f
Merge branch 'Unidata:main' into main
winash12 Jan 23, 2024
c3d7972
Merge branch 'Unidata:main' into main
winash12 Jan 29, 2024
2cf0570
Merge branch 'Unidata:main' into main
winash12 Mar 18, 2024
9e834c5
Merge branch 'Unidata:main' into main
winash12 Mar 27, 2024
2386ae3
making few changes
winash12 Mar 27, 2024
690743b
Merge branch 'Unidata:main' into main
winash12 Apr 4, 2024
dee7361
modified tools.py to include 2 functions
winash12 Apr 5, 2024
598b4d8
final code adjustments
winash12 Apr 5, 2024
85c22e1
made some changes
winash12 Apr 5, 2024
8e06c4a
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 Apr 5, 2024
ea07533
Delete logs
winash12 Apr 5, 2024
1ab6c99
Merge branch 'Unidata:main' into main
winash12 Apr 9, 2024
0aaae34
added latest changes for testing
winash12 Apr 9, 2024
3ed1dcb
fixed some errors
winash12 Apr 9, 2024
a71aac5
refactored get_vectorized_array_values
winash12 Apr 9, 2024
e9e3d1c
added the new methods of tools.py to metpy.calc.rst
winash12 Apr 10, 2024
c1a4cda
Merge branch 'Unidata:main' into main
winash12 Apr 10, 2024
6740e51
docs.yml
winash12 Apr 10, 2024
c853561
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 Apr 10, 2024
0a2f72b
fixed some doc errors
winash12 Apr 10, 2024
eb3430e
fixed docstring errors
winash12 Apr 10, 2024
31d0a23
tried to fix docstring
winash12 Apr 10, 2024
fce8322
Merge branch 'Unidata:main' into main
winash12 Apr 11, 2024
e92d02f
Merge branch 'Unidata:main' into main
winash12 May 10, 2024
1e01afc
made changes
winash12 May 10, 2024
4bcca79
made changes
winash12 May 10, 2024
2a0daf5
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 May 10, 2024
68aa49e
Revert permissions changes.
DWesl May 11, 2024
3bf4f99
Merge branch 'Unidata:main' into main
winash12 May 13, 2024
8b5783a
new commits i dont know why
winash12 May 13, 2024
e0c0228
new commits i dont know why
winash12 May 13, 2024
b82c147
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 May 13, 2024
7433179
Merge branch 'Unidata:main' into main
winash12 May 15, 2024
2603d78
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 May 15, 2024
8025eff
added 2 new arguments for rotational and irrotational wind reconstruc…
winash12 May 16, 2024
aebb42f
Merge pull request #1 from DWesl/fix-permissions
winash12 May 17, 2024
a3ae23e
Merge branch 'Unidata:main' into main
winash12 May 22, 2024
73f6a26
STY: Revert permissions changes.
DWesl May 22, 2024
0dc0cd5
remmoved decorators and metpy quantify methods
winash12 May 26, 2024
d7900a1
added an example python file to illustrate the reconstructed wind field
winash12 May 26, 2024
855a926
fixed pep8 errors
winash12 May 26, 2024
b3050b0
added units for 3 methods
winash12 May 28, 2024
3c64720
added 3 unit tests
winash12 May 28, 2024
3c256ea
fixed code to ensure tests passed
winash12 May 29, 2024
f03e4a4
fixed testing errors
winash12 May 29, 2024
d41749b
Merge branch 'Unidata:main' into main
winash12 Jun 3, 2024
02d19f2
Merge branch 'Unidata:main' into main
winash12 Jun 11, 2024
66ab624
Merge branch 'Unidata:main' into main
winash12 Jul 8, 2024
2401d47
Merge branch 'Unidata:main' into main
winash12 Jul 15, 2024
b563862
Merge branch 'Unidata:main' into main
winash12 Jul 17, 2024
e067b97
added a description for wind field reconstruction example
winash12 Jul 17, 2024
e7f89b2
Merge pull request #2 from DWesl/fix-permissions
winash12 Jul 17, 2024
03e9a86
changed double quote to single quote as per ruff
winash12 Jul 17, 2024
0a3be93
Merge branch 'main' of https://github.com/winash12/metpy into main
winash12 Jul 17, 2024
4893323
removed double quotes and added single quotes
winash12 Jul 17, 2024
7aa6e84
removed ruff errors
winash12 Jul 17, 2024
e0b6a27
removed all ruff errors
winash12 Jul 17, 2024
04e474d
removed all ruff errors
winash12 Jul 17, 2024
09ebd28
removed all ruff errors
winash12 Jul 17, 2024
e7c2fb4
removed boto3
winash12 Jul 18, 2024
22ccdf5
removed boto3
winash12 Jul 18, 2024
f6c5677
removed flake8 errors
winash12 Jul 18, 2024
4a059fa
added random generator
winash12 Jul 18, 2024
afeee6f
added rotational and divergennt methods
winash12 Jul 18, 2024
8f274b5
added more comments
winash12 Jul 18, 2024
78b8a2c
added more comments
winash12 Jul 18, 2024
d58a901
Merge branch 'Unidata:main' into main
winash12 Aug 24, 2024
e80d5b5
Merge branch 'Unidata:main' into main
winash12 Sep 1, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion docs/_templates/overrides/metpy.calc.rst
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,8 @@ Dynamic/Kinematic
wind_components
wind_direction
wind_speed

rotational_wind_from_inversion
divergent_wind_from_inversion

Boundary Layer/Turbulence
-------------------------
Expand Down Expand Up @@ -207,11 +208,14 @@ Other

angle_to_direction
azimuth_range_to_lat_lon
bounding_box_mask
find_bounding_indices
find_bounding_box_indices
find_intersections
get_layer
get_layer_heights
get_perturbation
get_vectorized_array_indices
isentropic_interpolation
isentropic_interpolation_as_dataset
nearest_intersection_idx
Expand Down
221 changes: 221 additions & 0 deletions examples/calculations/Vorticity_Divergence_Inversion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
# Copyright (c) 2022 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
=========
Vorticity
=========

Use `metpy.calc.vorticity`.

This example demonstrates the calculation of reconstructed wind field for
cyclone dora and plotting using matplotlib.
"""
import xarray as xr
import numpy as np
import metpy.calc as mpcalc
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
import matplotlib.ticker as mticker
import cartopy.crs as crs
from cartopy.feature import NaturalEarthFeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER

u850 = xr.open_dataset('gfs.t12z.pgrb2.0p25.f000', engine='cfgrib',
backend_kwargs={'filter_by_keys':
{'typeOfLevel': 'isobaricInhPa', 'shortName': 'u',
'level': 850}})
u = u850.u

v850 = xr.open_dataset('gfs.t12z.pgrb2.0p25.f000', engine='cfgrib',
backend_kwargs={'filter_by_keys':
{'typeOfLevel': 'isobaricInhPa', 'shortName': 'v',
'level': 850}})
v = v850.v


# Compute the 850 hPa relative vorticity.


vort850 = mpcalc.vorticity(u, v)
fig = plt.figure(figsize=(12, 9), dpi=300.)
# Create a set of axes for the figure and set
# its map projection to that of the input data.
ax = plt.axes(projection=crs.PlateCarree())

# Add country borders and coastlines.
countries = NaturalEarthFeature(category='cultural', scale='50m',
facecolor='none',
name='admin_0_countries')
ax.add_feature(countries, linewidth=.5, edgecolor='black')
ax.coastlines('50m', linewidth=0.8)

plot = vort850.plot(levels=np.arange(-1.e-4, 1.e-4, 0.2e-5),
cmap=get_cmap('PRGn'), transform=crs.PlateCarree(), cbar_kwargs={'label':
'relative vorticity (x$10^{-5} s^{-1}$)', 'shrink': 0.98})

# Set the map's extent to cover just Hurricane Dora.
ax.set_extent([-180., -150., 0., 20.], crs=crs.PlateCarree())

# Add latitude/longitude gridlines.
gridlines = ax.gridlines(color='grey', linestyle='dotted', draw_labels=True)
gridlines.xlabels_top = False
gridlines.ylabels_right = False
gridlines.xlocator = mticker.FixedLocator(np.arange(-180., 149., 5.))
gridlines.ylocator = mticker.FixedLocator(np.arange(0., 21., 5.))
gridlines.xlabel_style = {'size': 12, 'color': 'black'}
gridlines.ylabel_style = {'size': 12, 'color': 'black'}
gridlines.xformatter = LONGITUDE_FORMATTER
gridlines.yformatter = LATITUDE_FORMATTER

# Add a plot title, then show the image.
plt.title('GFS 0-h 850 hPa relative vorticity (x$10^{-5} s^{-1}$) at 1200 UTC 9 August 2023')
plt.savefig('vort.png')
plt.show()

# Compute the 850 hPa divergence.

div850 = mpcalc.divergence(u, v)

# Create a figure instance.
fig = plt.figure(figsize=(12, 9), dpi=300.)

# Create a set of axes for the figure and set
# its map projection to that of the input data.
ax = plt.axes(projection=crs.PlateCarree())

# Add country borders and coastlines.
countries = NaturalEarthFeature(category='cultural', scale='50m',
facecolor='none',
name='admin_0_countries')
ax.add_feature(countries, linewidth=.5, edgecolor='black')
ax.coastlines('50m', linewidth=0.8)

# Plot the 850 hPa divergence using xarray's plot functionality.
plot = div850.plot(levels=np.arange(-1.e-4, 1.e-4, 0.2e-5),
cmap=get_cmap('PRGn'), transform=crs.PlateCarree(),
cbar_kwargs={'label': 'relative vorticity (x$10^{-5} s^{-1}$)',
'shrink': 0.98})

# Set the map's extent to cover just Hurricane Dora.
ax.set_extent([-180., -150., 0., 20.], crs=crs.PlateCarree())

# Add latitude/longitude gridlines.
gridlines = ax.gridlines(color='grey', linestyle='dotted', draw_labels=True)
gridlines.xlabels_top = False
gridlines.ylabels_right = False
gridlines.xlocator = mticker.FixedLocator(np.arange(-180., 149., 5.))
gridlines.ylocator = mticker.FixedLocator(np.arange(0., 21., 5.))
gridlines.xlabel_style = {'size': 12, 'color': 'black'}
gridlines.ylabel_style = {'size': 12, 'color': 'black'}
gridlines.xformatter = LONGITUDE_FORMATTER
gridlines.yformatter = LATITUDE_FORMATTER

# Add a plot title, then show the image.
plt.title('GFS 0-h 850 hPa divergence (x$10^{-5} s^{-1}$) at 1200 UTC 9 August 2023')
plt.savefig('div.png')
plt.show()

umask = mpcalc.bounding_box_mask(u, 5., 13.5, 191., 202.)

vmask = mpcalc.bounding_box_mask(v, 5., 13.5, 191., 202.)


vortmask = mpcalc.bounding_box_mask(vort850, 5., 13.5, 191., 202.)


divmask = mpcalc.bounding_box_mask(div850, 5., 13.5, 191., 202.)

i_bb_indices = mpcalc.find_bounding_box_indices(vortmask, 5., 13.5, 191., 202.)


o_bb_indices = mpcalc.find_bounding_box_indices(vortmask, 0., 30., 180., 220.)


dx, dy = mpcalc.lat_lon_grid_deltas(vortmask.longitude, vortmask.latitude)

upsi, vpsi = mpcalc.rotational_wind_from_inversion(umask, vmask, vortmask, dx, dy,
o_bb_indices, i_bb_indices)

# Create a figure instance.
fig = plt.figure(figsize=(12, 9), dpi=300.)

# Create a set of axes for the figure and set
# its map projection to that of the input data.
ax = plt.axes(projection=crs.PlateCarree())

# Add country borders and coastlines.
countries = NaturalEarthFeature(category='cultural', scale='50m',
facecolor='none',
name='admin_0_countries')
ax.add_feature(countries, linewidth=.5, edgecolor='black')
ax.coastlines('50m', linewidth=0.8)

# Compute the magnitude of the non-divergent component of the 850 hPa wind.
nd_spd = np.sqrt(upsi**2 + vpsi**2)

# Plot this using xarray's plot functionality.
plot = nd_spd.plot(levels=np.arange(0., 13., 1.),
cmap=get_cmap('YlGnBu'), transform=crs.PlateCarree(),
cbar_kwargs={'label': 'non-divergent wind ($m s^{-1}$)', 'shrink': 0.98})

# Set the map's extent to match that over which we computed the non-divergent wind.
ax.set_extent([-180., -140., 0., 30.], crs=crs.PlateCarree())

# Add latitude/longitude gridlines.
gridlines = ax.gridlines(color='grey', linestyle='dotted', draw_labels=True)
gridlines.xlabels_top = False
gridlines.ylabels_right = False
gridlines.xlocator = mticker.FixedLocator(np.arange(-180., 139., 5.))
gridlines.ylocator = mticker.FixedLocator(np.arange(0., 31., 5.))
gridlines.xlabel_style = {'size': 12, 'color': 'black'}
gridlines.ylabel_style = {'size': 12, 'color': 'black'}
gridlines.xformatter = LONGITUDE_FORMATTER
gridlines.yformatter = LATITUDE_FORMATTER

# Add a plot title, then show the image.
plt.title('850 hPa non-divergent wind magnitude due to Dora at 1200 UTC 9 August 2023')
plt.savefig('reconstructed_rotational_wind.png')
plt.show()

uchi, vchi = mpcalc.divergent_wind_from_inversion(umask, vmask, divmask, dx, dy,
o_bb_indices, i_bb_indices)

# Create a set of axes for the figure and set
# its map projection to that of the input data.

ax = plt.axes(projection=crs.PlateCarree())

# Add country borders and coastlines.
countries = NaturalEarthFeature(category='cultural', scale='50m',
facecolor='none',
name='admin_0_countries')
ax.add_feature(countries, linewidth=.5, edgecolor='black')
ax.coastlines('50m', linewidth=0.8)

# Compute the magnitude of the non-divergent component of the 850 hPa wind.
nd_spd = np.sqrt(uchi**2 + vchi**2)

# Plot this using xarray's plot functionality.
plot = nd_spd.plot(levels=np.arange(0., 13., 1.),
cmap=get_cmap('YlGnBu'), transform=crs.PlateCarree(),
cbar_kwargs={'label': 'non-divergent wind ($m s^{-1}$)', 'shrink': 0.98})

# Set the map's extent to match that over which we computed the non-divergent wind.
ax.set_extent([-180., -140., 0., 30.], crs=crs.PlateCarree())

# Add latitude/longitude gridlines.
gridlines = ax.gridlines(color='grey', linestyle='dotted', draw_labels=True)
gridlines.top_labels = False
gridlines.right_labels = False
gridlines.xlocator = mticker.FixedLocator(np.arange(-180., 139., 5.))
gridlines.ylocator = mticker.FixedLocator(np.arange(0., 31., 5.))
gridlines.xlabel_style = {'size': 12, 'color': 'black'}
gridlines.ylabel_style = {'size': 12, 'color': 'black'}
gridlines.xformatter = LONGITUDE_FORMATTER
gridlines.yformatter = LATITUDE_FORMATTER

# Add a plot title, then show the image.
plt.title('850 hPa divergent wind magnitude due to Dora at 1200 UTC 9 August 2023')
plt.savefig('irrotational_winds.png')
plt.show()
122 changes: 119 additions & 3 deletions src/metpy/calc/kinematics.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@
# SPDX-License-Identifier: BSD-3-Clause
"""Contains calculation of kinematic parameters (e.g. divergence or vorticity)."""
import numpy as np

import xarray as xa
from . import coriolis_parameter
from .tools import (first_derivative, geospatial_gradient, get_layer_heights,
parse_grid_arguments, vector_derivative)
from .tools import (first_derivative, geospatial_gradient, get_vectorized_array_indices,
get_layer_heights, parse_grid_arguments, vector_derivative)
from .. import constants as mpconsts
from ..package_tools import Exporter
from ..units import check_units, units
Expand Down Expand Up @@ -1430,3 +1430,119 @@ def geospatial_laplacian(f, *, dx=None, dy=None, x_dim=-1, y_dim=-2,
meridional_scale=meridional_scale)
return divergence(grad_u, grad_y, dx=dx, dy=dy, x_dim=x_dim, y_dim=y_dim,
parallel_scale=parallel_scale, meridional_scale=meridional_scale)


@exporter.export
@parse_grid_arguments
def rotational_wind_from_inversion(umask, vmask, vortmask, dx, dy, o_bb_indices, i_bb_indices):
r"""Calculate reconstructed rotational wind field from vorticity.

Parameters
----------
vortmask : 'xarray DataArray' subset of the original vorticity for the entire globe
dx : `pint.Quantity`,required
The grid spacing(s) in the x-direction. If an array, there should be one item less than
the size of `u` along the applicable axis. Optional if `xarray.DataArray` with
latitude/longitude coordinates used as input. Also optional if one-dimensional
longitude and latitude arguments are given for your data on a non-projected grid.
Keyword-only argument.
dy : `pint.Quantity`, required
The grid spacing(s) in the y-direction. If an array, there should be one item less than
the size of `u` along the applicable axis. Optional if `xarray.DataArray` with
latitude/longitude coordinates used as input. Also optional if one-dimensional
longitude and latitude arguments are given for your data on a non-projected grid.
Keyword-only argument.
o_bb_indices : contains the x and y lower left and upper right indices
i_bb_indices : contains the x and y lower left and upper right indices
"""
upsi = xa.zeros_like(umask)
vpsi = xa.zeros_like(vmask)
dx1 = dx.magnitude
dy1 = dy.magnitude
[xindex, yindex] = get_vectorized_array_indices(i_bb_indices)
iindex = np.zeros_like(yindex)
jindex = np.zeros_like(yindex)
o_x_ll = o_bb_indices.x_ll
o_x_ur = o_bb_indices.x_ur
o_y_ll = o_bb_indices.y_ll
o_y_ur = o_bb_indices.y_ur
x_ll = i_bb_indices.x_ll
x_ur = i_bb_indices.x_ur
y_ll = i_bb_indices.y_ll
y_ur = i_bb_indices.y_ur
vortmask1 = vortmask.values
for i in range(o_x_ll, o_x_ur):
for j in range(o_y_ur, o_y_ll):
iindex[:, :] = i
jindex[:, :] = j
xdiff = (iindex - xindex) * dx1[y_ur:y_ll, x_ll:x_ur]
ydiff = (jindex - yindex) * dy1[y_ur:y_ll, x_ll:x_ur]
rsq = xdiff * xdiff + ydiff * ydiff
upsi[j, i] = np.where(rsq > 0., vortmask1[y_ur:y_ll, x_ll:x_ur] * -1.0 * (
ydiff / rsq) * dx1[y_ur:y_ll, x_ll:x_ur] * dy1[y_ur:y_ll,
x_ll:x_ur], 0.0).sum()
vpsi[j, i] = np.where(rsq > 0., vortmask1[y_ur:y_ll, x_ll:x_ur] * (
xdiff / rsq) * dx1[y_ur:y_ll, x_ll:x_ur] * dy1[y_ur:y_ll,
x_ll:x_ur], 0.0).sum()
upsi[:, :] = (1 / (2 * np.pi)) * upsi[:, :]
vpsi[:, :] = (1 / (2 * np.pi)) * vpsi[:, :]

return upsi, vpsi


@exporter.export
def divergent_wind_from_inversion(umask, vmask, divmask, dx, dy, o_bb_indices, i_bb_indices):
r"""Calculate reconstructed divergent wind field from divergence.

Parameters
----------
divmask : 'xarray DataArray' subset of the original vorticity for the entire globe
dx : `pint.Quantity`,required
The grid spacing(s) in the x-direction. If an array, there should be one item less than
the size of `u` along the applicable axis. Optional if `xarray.DataArray` with
latitude/longitude coordinates used as input. Also optional if one-dimensional
longitude and latitude arguments are given for your data on a non-projected grid.
Keyword-only argument.
dy : `pint.Quantity`, required
The grid spacing(s) in the y-direction. If an array, there should be one item less than
the size of `u` along the applicable axis. Optional if `xarray.DataArray` with
latitude/longitude coordinates used as input. Also optional if one-dimensional
longitude and latitude arguments are given for your data on a non-projected grid.
Keyword-only argument.
o_bb_indices : contains the x and y lower left and upper right indices
i_bb_indices : contains the x and y lower left and upper right indices
"""
uchi = xa.zeros_like(umask)
vchi = xa.zeros_like(vmask)
dx1 = dx.magnitude
dy1 = dy.magnitude
divmask1 = divmask.values
[xindex, yindex] = get_vectorized_array_indices(i_bb_indices)
iindex = np.zeros_like(yindex)
jindex = np.zeros_like(yindex)
o_x_ll = o_bb_indices.x_ll
o_x_ur = o_bb_indices.x_ur
o_y_ll = o_bb_indices.y_ll
o_y_ur = o_bb_indices.y_ur
x_ll = i_bb_indices.x_ll
x_ur = i_bb_indices.x_ur
y_ll = i_bb_indices.y_ll
y_ur = i_bb_indices.y_ur
for i in range(o_x_ll, o_x_ur):
for j in range(o_y_ur, o_y_ll):
iindex[:, :] = i
jindex[:, :] = j
xdiff = (iindex - xindex) * dx1[y_ur:y_ll, x_ll:x_ur]
ydiff = (jindex - yindex) * dy1[y_ur:y_ll, x_ll:x_ur]
rsq = xdiff * xdiff + ydiff * ydiff
uchi[j, i] = np.where(rsq > 0., divmask1[y_ur:y_ll, x_ll:x_ur] * (
xdiff / rsq) * dx1[y_ur:y_ll, x_ll:x_ur] * dy1[y_ur:y_ll,
x_ll:x_ur], 0.0).sum()
vchi[j, i] = np.where(rsq > 0., divmask1[y_ur:y_ll, x_ll:x_ur] * (
ydiff / rsq) * dx1[y_ur:y_ll, x_ll:x_ur] * dy1[y_ur:y_ll,
x_ll:x_ur], 0.0).sum()

uchi[:, :] = (1 / (2 * np.pi)) * uchi[:, :]
vchi[:, :] = (1 / (2 * np.pi)) * vchi[:, :]

return uchi, vchi
Loading
Loading