Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
yaojin17 committed Nov 21, 2024
0 parents commit 441ab5e
Show file tree
Hide file tree
Showing 20 changed files with 3,411 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
.DS_store
.idea
3 changes: 3 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"liveServer.settings.port": 5501
}
16 changes: 16 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Nerfies

This is the repository that contains source code for the [Nerfies website](https://nerfies.github.io).

If you find Nerfies useful for your work please cite:
```
@article{park2021nerfies
author = {Park, Keunhong and Sinha, Utkarsh and Barron, Jonathan T. and Bouaziz, Sofien and Goldman, Dan B and Seitz, Steven M. and Martin-Brualla, Ricardo},
title = {Nerfies: Deformable Neural Radiance Fields},
journal = {ICCV},
year = {2021},
}
```

# Website License
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
307 changes: 307 additions & 0 deletions index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,307 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Open Vocabulary Monocular 3D Object Detection">
<!-- <meta name="keywords" content="Nerfies, D-NeRF, NeRF">
<meta name="viewport" content="width=device-width, initial-scale=1"> -->
<title>Open Vocabulary Monocular 3D Object Detection</title>

<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];

function gtag() {
dataLayer.push(arguments);
}

gtag('js', new Date());

gtag('config', 'G-PYVRSFMDRL');
</script>

<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">

<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>


<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Open Vocabulary Monocular 3D Object Detection</h1>
<div class="is-size-5 publication-authors">
<div class="is-size-5 publication-authors">
<a href="https://yaojin17.github.io/" class="author-block" style="margin-right: 20px; text-decoration: none; position: relative;">
<span>Jin Yao</span>
<sup style="position: absolute; top: -5px; right: -5px; font-size: 0.8em;">1</sup>
</a>
<a href="https://www.linkedin.com/in/hao--gu/" class="author-block" style="margin-right: 20px; text-decoration: none; position: relative;">
<span>Hao Gu</span>
<sup style="position: absolute; top: -5px; right: -5px; font-size: 0.8em;">1</sup>
</a>
<a href="https://xuweiyichen.github.io/" class="author-block" style="margin-right: 20px; text-decoration: none; position: relative;">
<span>Xuweiyi Chen</span>
<sup style="position: absolute; top: -5px; right: -5px; font-size: 0.8em;">1</sup>
</a>
<a href="https://pwang.pw/" class="author-block" style="margin-right: 20px; text-decoration: none; position: relative;">
<span>Jiayun Wang</span>
<sup style="position: absolute; top: -5px; right: -8px; font-size: 0.8em;">2</sup>
</a>
<a href="https://sites.google.com/site/zezhoucheng/" class="author-block" style="text-decoration: none; position: relative;">
<span>Zezhou Cheng</span>
<sup style="position: absolute; top: -5px; right: -5px; font-size: 0.8em;">1</sup>
</a>
</div>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block" style="position: relative; margin-right: 20px;">
<sup style="position: absolute; top: -5px; left: -10px; font-size: 0.8em;">1</sup>
University of Virginia
</span>
<span class="author-block" style="position: relative;">
<sup style="position: absolute; top: -5px; left: -10px; font-size: 0.8em;">2</sup>
California Institute of Technology
</span>
</div>

<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<!-- <span class="link-block">
<a href="https://arxiv.org/pdf/2011.12948"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span> -->
<span class="link-block">
<a href="https://arxiv.org/abs/2011.12948"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>

<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/UVA-Computer-Vision-Lab/ovmono3d"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>GitHub</span>
</a>
</span>
<!-- Dataset Link. -->
<!-- <span class="link-block">
<a href="https://github.com/google/nerfies/releases/tag/0.1"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a> -->
</div>

</div>
</div>
</div>
</div>
</div>
</section>

<section class="section">
<div class="container is-max-desktop">
<!-- title -->
<!-- <h2 class="title is-4" style="text-align: center; margin-bottom: 1rem;">Qualitative Visualizations on the Omni3D Test Set</h2> -->

<!-- figure and caption -->
<figure>
<img src="static/images/coco_large.png" alt="Zero-Shot Performance on In-the-Wild COCO Images" style="width: 100%; display: block; margin: 0 auto;">
<figcaption>
<div class="content">
<p>
<strong>OVMono3D-LIFT's Zero-Shot Performance on In-the-Wild COCO Images</strong>.
We display 3D predictions overlaid on the images and the top-down views with a base grid of
<span class="math">\(1\,\text{m} \times 1\,\text{m}\)</span> tiles.
For single-object images, only front-views are displayed.
</p>
</div>
</figcaption>
</figure>
</div>
</section>

<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
In this work, we pioneer to study of open-vocabulary monocular 3D object detection, a novel task that aims to detect and localize objects in 3D space from a single RGB image without limiting detection to a predefined set of categories.
</p>
<p>
We formalize this problem, establish baseline methods, and introduce a class-agnostic approach that leverages open-vocabulary 2D detectors and lifts 2D bounding boxes into 3D space.
Our approach decouples the recognition and localization of objects in 2D from the task of estimating 3D bounding boxes, enabling generalization across unseen categories.
Additionally, we propose a target-aware evaluation protocol to address inconsistencies in existing datasets, improving the reliability of model performance assessment.
</p>
<p>
Extensive experiments on the Omni3D dataset demonstrate the effectiveness of the proposed method in zero-shot 3D detection for novel object categories, validating its robust generalization capabilities.
Our method and evaluation protocols contribute towards the development of open-vocabulary object detection models that can effectively operate in real-world, category-diverse environments.
</p>
</div>
</div>
</div>
</div>
</section>


<section class="section">
<div class="container is-max-desktop">
<!-- title -->
<h2 class="title is-4" style="text-align: center; margin-bottom: 1rem;">Proposed Methods</h2>
<!-- figure and caption -->
<figure>
<img src="static/images/pipeline.png" alt="Proposed Methods" style="width: 70%; display: block; margin: 0 auto;">
<figcaption>
<div class="content">
<p>
<strong>(a)</strong> OVMono3D-GEO is a training-free method that predicts 3D detections from 2D via geometric unprojection.
It exploits off-the-shelf depth estimation (e.g.,
<a href="https://github.com/apple/ml-depth-pro" target="_blank">Depth Pro</a>),
segmentation (e.g.,
<a href="https://github.com/facebookresearch/segment-anything" target="_blank">SAM</a>),
and OV 2D detector (<a href="https://github.com/IDEA-Research/GroundingDINO" target="_blank">Grounding DINO</a>).
<strong>(b)</strong> OVMono3D-LIFT is a learning-based approach that trains a class-agnostic neural network to lift 2D detections to 3D.
Both approaches disentangle the recognition and location in 2D from the estimation of 3D bounding boxes.
</p>
</div>
</figcaption>
</figure>
</div>
</section>



<section class="section">
<div class="container is-max-desktop">
<!-- title -->
<h2 class="title is-4" style="text-align: center; margin-bottom: 1rem;">Qualitative Visualizations on the Omni3D Test Set</h2>

<!-- figure and caption -->
<figure>
<img src="static/images/qualitative1.png" alt="Qualitative Results 1" style="width: 100%; display: block; margin: 0 auto;">
<figcaption>
<div class="content">
<p>
For each example, we present the predictions of Cube R-CNN and
OVMono3D-LIFT, displaying both the 3D predictions overlaid on the image
and a top-down view with a base grid of
<span class="math">\(1\,\text{m} \times 1\,\text{m}\)</span> tiles. Base categories are depicted
with brown cubes, while novel categories are represented in other colors.
</p>
</div>
</figcaption>
</figure>
</div>
</section>


<section class="section">
<div class="container is-max-desktop">
<!-- title -->
<h2 class="title is-4" style="text-align: center; margin-bottom: 1rem;">Target-Aware Evaluation</h2>

<!-- figure and caption -->
<figure>
<img src="static/images/annotationissue.png" alt="Target-Aware Evaluation" style="width: 100%; display: block; margin: 0 auto;">
<figcaption>
<div class="content">
<p>
<strong>(a)</strong>
<span style="color: blue;">Naming ambiguity</span> and
<span style="color: red;">missing annotations</span> are common in the benchmarks.
In this example, the 3D annotations are missing for "books"; the "shelves" share high similarity with "bookcases".
<strong>(b)</strong>
This induces inaccurate performance assessment of open-vocabulary 3D detection under the standard evaluation.
<strong>(c)</strong>
Our target-aware evaluation effectively resolves this issue by prompting the categories presented in the annotations.
</p>
</div>
</figcaption>
</figure>
</div>
</section>


<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">Citation</h2>
<pre><code>
</code></pre>
</div>
</section>


<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/keunhong" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is adapted from <a href="https://github.com/nerfies/nerfies.github.io">Nerfies</a>, licensed
under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>

</body>
</html>
1 change: 1 addition & 0 deletions static/css/bulma-carousel.min.css

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 441ab5e

Please sign in to comment.