Skip to content

Trigenaris/Exploratory_data_analysis_on_diabetes_dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Exploratory Data Analysis on Diabetes Dataset

Business Problem

In this section, we will do an exploratory data analysis for the current diabetes dataset.

Dataset Story

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.2 From the data set in the (.csv) File We can find several variables, some of them are independent (several medical predictor variables) and only one target dependent variable (Outcome).

Dataset Features

  • Pregnancies: To express the Number of pregnancies
  • Glucose: To express the Glucose level in blood
  • BloodPressure: To express the Blood pressure measurement
  • SkinThickness: To express the thickness of the skin
  • Insulin: To express the Insulin level in the blood
  • BMI: To express the Body mass index
  • DiabetesPedigreeFunction: To express the Diabetes percentage
  • Age: To express the age
  • Outcome: To express the final result 1 is Yes and 0 is No

Necessary Libraries

Required libraries and some settings for this section are:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

pd.set_option("display.max_columns", None)
pd.set_option("display.max_rows", None)
pd.set_option("display.width", 500)
pd.set_option("display.float_format", lambda x: "%.4f" % x)

Importing the Dataset

First, we import the dataset diabetes.csv into the pandas DataFrame.

General Information About the Dataset

Checking the Data Frame

As we want to check the data to have a general opinion about it, we create and use a function called check_df(dataframe, head=5, tail=5) that prints the referred functions:

dataframe.head(head)

dataframe.tail(tail)

dataframe.shape

dataframe.dtypes

dataframe.size

dataframe.isnull().sum()

dataframe.describe([0, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99, 1]).T

Defining the Columns

After checking the data frame, we need to define and separate columns as categorical and numerical. We define a function called grab_col_names for separation that benefits from multiple list comprehensions as follows:

cat_cols = [col for col in dataframe.columns if str(dataframe[col].dtypes) in ['category', 'object', 'bool']]
num_but_cat = [col for col in dataframe.columns if dataframe[col].nunique() < cat_th and dataframe[col].dtypes in ['uint8', 'int64', 'int32', 'float64']]
cat_but_car = [col for col in df.columns if df[col].nunique() > car_th and str(df[col].dtypes) in ['object', 'category']]
cat_cols = cat_cols + num_but_cat
num_cols = [col for col in dataframe.columns if dataframe[col].dtypes in ['uint8', 'int64', 'float64']]
num_cols = [col for col in num_cols if col not in cat_cols]

cat_th and car_th are the threshold parameters to decide the column type.

Categorical Columns:

  • Outcome

Numerical Columns:

  • Pregnancies
  • Glucose
  • Blood Pressure
  • Skin Thickness
  • Insulin
  • BMI
  • Diabetes Pedigree Function
  • Age

Summarization and Visualization of the Categorical and Numerical Columns

To summarize and visualize the referred column we create two other functions called cat_summary and num_summary.

For example, the categorical column Outcome:

############### Outcome ###############

Outcome Outcome Nr Ratio
0 500 65.1042
1 268 34.8958

__results___12_1

Another example is, the numerical column Pregnancies:

############### Pregnancies ###############

Process Result
count 768.0000
mean 3.8451
std 3.3696
min 0.0000
1% 0.0000
5% 0.0000
10% 0.0000
20% 1.0000
30% 1.0000
40% 2.0000
50% 3.0000
60% 4.0000
70% 5.0000
80% 7.0000
90% 9.0000
95% 10.0000
99% 13.0000
max 17.0000

Name: Pregnancies, dtype: float64

__results___15_1

With the help of a for loop we apply these functions to all columns in the data frame.

We create another plot function called plot_num_summary(dataframe) to see the whole summary of numerical columns due to the high quantity of them:

__results___17_0

Target Analysis

We create another function called target_summary_with_num(dataframe, target, numerical_col) to examine the target by numerical features.

For instance Glucose Feature

################ Outcome --> Glucose #################

Outcome Glucose
0 109.9800
1 141.2575

Correlation Analysis

To analyze correlations between numerical columns we create a function called high_correlated_cols(dataframe):

__results___27_1