anaconda安装
./Anaconda3-5.2.0-Linux-x86_64.sh
按ENTER,然后按q调至结尾
接受协议 yes
安装路径 使用默认路径
执行安装
在使用的用户.bashrc上添加anaconda路径,比如
export PATH=/home/willer/anaconda3/bin:$PATH
caffe安装
git clone https://github.com/Wulingtian/yolov5_caffe.git
cd yolov5_caffe
命令行输入如下内容:
export CPLUS_INCLUDE_PATH=/home/你的用户名/anaconda3/include/python3.6m
make all -j8
make pycaffe -j8
vim ~/.bashrc
export PYTHONPATH=/home/你的用户名/yolov5_caffe/python:$PYTHONPATH
source ~/.bashrc
libstdc++.so.6: version `GLIBCXX_3.4.21' not found
解决方案:搞定 libstdc++.so.6: version `GLIBCXX_3.4.21' not found
ImportError: No module named google.protobuf.internal
解决方案:ImportError: No module named google.protobuf.internal
wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or dir
解决方案:caffe : /wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or dir
pip安装onnx和onnx-simplifier
pip install onnx
pip install onnx-simplifier
拉取yolov5官方代码
git clone https://github.com/ultralytics/yolov5.git
训练自己的模型步骤参考yolov5官方介绍,训练完成后我们得到了一个模型文件
cd yolov5
vim models/export.py 修改opset_version为10
python models/export.py --weights 训练得到的模型权重路径 --img-size 训练图片输入尺寸
python -m onnxsim onnx模型名称 yolov5s-simple.onnx 得到最终简化后的onnx模型
git clone https://github.com/Wulingtian/yolov5_onnx2caffe.git
cd yolov5_onnx2caffe
vim convertCaffe.py
设置onnx_path(上面转换得到的onnx模型),prototxt_path(caffe的prototxt保存路径),caffemodel_path(caffe的caffemodel保存路径)
python convertCaffe.py 得到转换好的caffe模型
定位到yolov5_caffe目录下
cd tools
vim caffe_yolov5s.cpp
设置如下参数:
INPUT_W(模型输入宽度)
INPUT_H(模型输入高度)
NUM_CLASS(模型有多少个类别,例如我训练的模型是安全帽检测,只有1类,所以设置为1,不需要加背景类)
NMS_THRESH(做非极大值抑制的阈值)
CONF_THRESH(类别置信度)
prototxt_path(caffe模型的prototxt路径)
caffemodel_path(caffe模型的caffemodel路径)
pic_path(预测图片的路径)
定位到yolov5_caffe目录下
make -j8
cd build
./tools/caffe_yolov5s 输出平均推理时间,以及保存预测图片到当前目录下,至此,部署完成!