Skip to content

Lightspeeur TensorFlow 2.0 Model Development Framework for Gyrfalcon Technology

Notifications You must be signed in to change notification settings

TeamDollus/lightspeeur

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lightspeeur

Lightspeeur TensorFlow Model Development Framework

Supported Layers

Conv2D, Conv2DTranspose and DepthwiseConv2D

from lightspeeur.layers import Conv2D, Conv2DTranspose, DepthwiseConv2D
from lightspeeur.drivers.specification import UpSampleFillingMode

# Conv2D
outputs = Conv2D(32, (3, 3), 
                 strides=(1, 1),
                 chip_id='2803', 
                 bit_mask=12)(inputs)

# Conv2DTranspose
outputs = Conv2DTranspose(64, (3, 3), 
                          strides=(1, 1),
                          chip_id='2803', 
                          upsample_filling_mode=UpSampleFillingMode.REPEAT, 
                          bit_mask=12)(inputs)

# DepthwiseConv2D
outputs = DepthwiseConv2D(chip_id='2803',
                          kernel_size=(3, 3),
                          strides=(1, 1),
                          bit_mask=12)(inputs)

ReLU

from lightspeeur.layers import ReLU

outputs = ReLU(chip_id='2803')(inputs)

MaxPooling2D

from lightspeeur.layers import MaxPooling2D

outputs = MaxPooling2D()(inputs)

Example

import tensorflow as tf

from tensorflow.keras import Model
from lightspeeur.models import ModelStageAdvisor
from lightspeeur.layers import Conv2D, ReLU, MaxPooling2D

l = tf.keras.layers

# Model Definition
chip_id = '2803'
inputs = l.Input(shape=(28, 28, 1))
x = Conv2D(32, (3, 3), chip_id, bit_mask=12, quantize=False)(inputs)
x = l.BatchNormalization()(x)
x = ReLU(chip_id, quantize=False)(x)
x = MaxPooling2D()(x)
x = Conv2D(64, (3, 3), chip_id, bit_mask=12, quantize=False)(x)
x = ReLU(chip_id, quantize=False)(x)
x = MaxPooling2D()(x)
x = Conv2D(32, (3, 3), chip_id, bit_mask=12, quantize=False)(x)
x = l.BatchNormalization()(x)
x = ReLU(chip_id, quantize=False)(x)
x = MaxPooling2D()(x)
x = l.Flatten()(x)
x = l.Dense(64, activation='relu')(x)
x = l.Dense(10, activation='softmax')(x)
outputs = x
model = Model(inputs=inputs, outputs=outputs, name='mnist_conv')

# Model Advisor
compile_options = {
  'optimizer': 'adam',
  'loss': 'sparse_categorical_crossentropy',
  'metrics': ['accuracy']
}
advisor = ModelStageAdvisor(chip_id=chip_id,
                            model=model,
                            compile_options=compile_options)
# Fit the Model
while True:
  advanced = advisor.advance_stage()
  if advanced:
    advisor.propose(train_x, train_y, epochs=10, validation_split=0.2)
  else:
    break

advisor.get_model().save('lightspeeur_model.hdf5')

About

Lightspeeur TensorFlow 2.0 Model Development Framework for Gyrfalcon Technology

Topics

Resources

Stars

Watchers

Forks

Languages