Skip to content

PID-GraspNet: A Large-Scale Pointcloud-Image-Description Dataset for Robotic Grasping based on GraspNet-1Billion

Notifications You must be signed in to change notification settings

TX-Leo/PID-GraspNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PID-GraspNet: A Large-Scale Pointcloud-Image-Description Dataset for Robotic Grasping based on GraspNet-1Billion

@Date: 2023.7.1

@Author: Zhi Wang(Leo TX)

@Email: [email protected]

Download our PID-GraspNet Dataset directly

coming soon...

Acknowledgement

This dataset is generated based on GraspNet-1Billion Dataset. Thank MVIG @ STJU!

Prepare GraspNet-1Billion Dataset First

Visit the GraspNet Website to get the dataset.

Graspnet-1Billion Document:Online Document, PDF Document

GraspNet-1Billion Dataset structure should be:

  • graspnet
    • scene
    • models
    • dex_models
    • grasp_label
    • collision_label

Installation

Get the code.

git clone https://github.com/TX-Leo/Text-Image-3D-Graspnet-Dataset.git
cd Text-Image-3D-Graspnet-Dataset

Create conda env.

conda create -n pid-graspnet
conda activate pid-graspnet
conda install python=3.8

Install packages(graspnetAPI).

pip install .

Grasp Definition

rect

- score
- height
- center_point
    - center_point_1
    - center_point_2
- open_point
    - open_point_1
    - open_point_2

6d

- score
- width
- height
- depth
- translation
    - translation_1
    - translation_2
    - translation_3
- rotation
    - rotation_1
    - rotation_2
    - rotation_3

Generate PID-GraspNet Dataset

Step 0.check GraspNet-1Billion Dataset

call graspnetAPI.GraspNet.checkDataCompleteness()

python generate_dataset.py --check_dataset --check_graspnet_1billion --graspnet_root 'your-graspnet-root'

Step 1.generate grasp_scene_point_clouds

you can save point clouds in ".pcd" / ".npy(points)" / ".npy(points_and_colors)", take ".npy(points)" for example

python generate_dataset.py --generate_grasp_scene_point_clouds --graspnet_root 'your-graspnet-root' --camera 'kinect' --sceneId_start 0 --sceneId_end 100 --align_to_table --voxel_size 0.005 --save_npy_points

check if generate grasp_scene_point_clouds successfully

python generate_dataset.py --check_dataset --check_grasp_scene_point_clouds --graspnet_root 'your-graspnet-root' --camera 'kinect' --sceneId_start 0 --sceneId_end 100 

Step 2.generate grasp_jsons

generate top-10 grasps in score

python generate_dataset.py --generate_grasp_jsons --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --sceneId_start 0 --sceneId_end 100 --annId_start 0 --annId_end 256 --fric_coef_thresh 0.2 --no-show --specified_range_generate_grasp_jsons

check if generate grasp_jsons successfully

python generate_dataset.py --check_dataset --check_grasp_jsons --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --sceneId_start 0 --sceneId_end 100 --annId_start 0 --annId_end 256

Step 3.generate grasp_tsvs_real

You should follow the steps below (change the last parameter):

  • 1.generate_grasp_tsvs_real_uncoded

  • 2.generate_grasp_txt_real_uncoded

  • 3.plot_grasp_txt_real_uncoded

  • 4.generate_grasp_txt_real_encoded

  • 5.plot_grasp_txt_real_encoded

python generate_dataset.py --generate_grasp_tsvs_real --graspnet_root 'your-graspnet-root' --train_or_test 'train' --camera 'kinect' --format '6d' --sceneId_start 0 --scene_sum 100 --sceneId_end 100 --annId_start 0 --annId_end 256 --generate_grasp_tsvs_real_uncoded

check if generate grasp_tsvs_real successfully

python generate_dataset.py --check_dataset --check_grasp_tsvs_real --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --scene_sum 100 --sceneId_start 0 --sceneId_end 100 --annId_start 0 --annId_end 256

Step 4.generate grasp_tsvs_train

python generate_dataset.py --generate_grasp_tsvs_train --graspnet_root 'your-graspnet-root' --train_or_test 'train' --camera 'kinect' --format '6d' --sceneId_start 0 --scene_sum 100 --sceneId_end 100 --annId_start 0 --annId_end 256 --specified_range_generate_grasp_tsvs_train

check if generate grasp_tsvs_train successfully

python generate_dataset.py --check_dataset --check_grasp_tsvs_train --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --scene_sum 100 --sceneId_start 0 --sceneId_end 100 --annId_start 0 --annId_end 256

Step 5.generate grasp_dataloader_config

you can modify the proportion(default: train:valid=9:1)

python generate_dataset.py --generate_grasp_dataloader_config --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --sceneId_start 0 --scene_sum 100 --sceneId_end 100 --annId_start 0 --annId_end 256 --train_valid_proportion 90

check if generate grasp_dataloader_config successfully

python generate_dataset.py --check_dataset --check_grasp_dataloader_config --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --scene_sum 100

Step 6.generate grasp_tsvs_predicted

You should follow the steps below (change the last parameter):

  • 1.generate_grasp_tsvs_predicted_encoded

  • 2.generate_grasp_txt_predicted_encoded

  • 3.plot_grasp_txt_predicted_encoded

  • 4.generate_grasp_txt_predicted_uncoded

  • 5.plot_grasp_txt_predicted_uncoded

python generate_dataset.py --generate_grasp_tsvs_predicted --graspnet_root 'your-graspnet-root' --train_or_test 'test' --camera 'kinect' --format '6d' --sceneId_start 0 --scene_sum 100 --sceneId_end 100 --annId_start 0 --annId_end 256 --generate_grasp_tsvs_predicted_encoded

check if generate grasp_tsvs_predicted successfully

to be done

Step 7.generate_grasp_npys_eval

python generate_dataset.py --generate_grasp_npys_eval --graspnet_root 'your-graspnet-root' --train_or_test 'test' --camera 'kinect' --format '6d' --sceneId_start 0 --scene_sum 100 --sceneId_end 100 --annId_start 0 --annId_end 256 --specified_range_generate_grasp_npys_eval

check if generate grasp_npys_eval successfully

to be done

Step 8.evaluation

you can:

  • 1.eval_a_single_scene

  • 2.eval_scenes

  • 3.eval_train_dataset

  • 4.eval_valid_dataset

  • 5.eval_test_dataset

  • 6.eval_all_data

python generate_dataset.py --eval --graspnet_root 'your-graspnet-root' --camera 'kinect' --format '6d' --sceneId_start 0 --scene_sum 100 --sceneId_end 100  --split 'test' --proc 24 --eval_a_single_scene --specified_sceneId 121

PID-GraspNet Dataset Structure

  • scene

    • scene_0000
    • scene_0001
      • object_id_list.txt
      • rs_wrt_kn.npy
      • kinect
        • rgb
          • 0000.png to 0255.png
        • depth
          • 0000.png to 0255.png
        • label
          • 0000.png to 0255.png
        • annotations
          • 0000.xml to 0255.xml
        • meta
          • 0000.mat to 0255.mat
        • rect
          • 0000.npy to 0255.npy
        • camK.npy
        • camera_poses.npy
        • cam0_wrt_table.npy
      • realsense
    • ....
    • scene_0189
  • models

    • 000
    • 001
      • nontextured.ply
      • nontextured_simplified.ply
      • textured.jpg
      • textured.obj
      • textured.obj.mtl
      • textured.sdf
    • ....
    • 087
    • readme.txt
    • sim_mesh.mlx
    • sim_mesh.py
    • updates.txt
  • dex_models

    • 000.okl
    • 001.pkl
    • ....
    • 087.pkl
  • grasp_label

    • 000_labels.npz
    • 001_labels.npz
    • ....
    • 087_labels.npz
  • collision_label

    • scene_0000
    • scene_0001
      • collision_labels.npz
    • ....
    • scene_0189
  • grasp_scene_point_clouds

    • realsense
    • kinect
      • pcd
      • npy_points
      • npy_points_and_colors
        • 0000.npy
        • 0001.npy
        • ....
        • 0099.npy
  • grasp_jsons

    • realsense
    • kinect
      • rect
        • 0000
        • 0001
          • 0000
          • 0001
            • grasp_05_00.json(grasp_id_num.json)
            • grasp_05_01.json
              • rbg_img_path
              • depth_img_path
              • all_obj_names_and_ids_dict
              • object_id
              • object_name
              • score
              • height
              • center_point(2)
              • open_point(2)
            • ....
            • grasp_05_09.json
            • grasp_11_00.json
            • grasp_11_01.json
            • ....
          • ....
          • 0255
        • ....
        • 0099
      • 6d
        • 0000
        • 0001
          • 0000
          • 0001
            • grasp_05_00.json(grasp_id_num.json)
            • grasp_05_01.json
              • rbg_img_path
              • depth_img_path
              • all_obj_names_and_ids_dict
              • object_id
              • object_name
              • score
              • width
              • height
              • depth
              • translation(3*1)
              • rotation_matrix(3*3)
            • ....
            • grasp_05_09.json
            • grasp_11_00.json
            • grasp_11_01.json
            • ....
          • ....
          • 0255
        • ....
        • 0099
  • grasp_tsvs_real

    • grasp_tsvs_real_kinect_rect_100
    • grasp_tsvs_real_kinect_6d_100
      • 0000

      • 0001

        • 0000
        • 0001
          • grasp_05_00.tsv(grasp_id_num.tsv)
          • grasp_05_01.tsv
            • score
            • width
            • height
            • depth
            • translation_1
            • translation_2
            • translation_3
            • rotation_1
            • rotation_2
            • rotation_3
          • ....
          • grasp_05_09.tsv
          • grasp_11_00.tsv
          • grasp_11_01.tsv
          • ....
        • ....
        • 0256
      • ....

      • 0099

      • all_score_uncoded.txt

      • all_width_uncoded.txt

      • all_height_uncoded.txt

      • all_depth_uncoded.txt

      • all_translation_1_uncoded.txt

      • all_translation_2_uncoded.txt

      • all_translation_3_uncoded.txt

      • all_rotation_1_uncoded.txt

      • all_rotation_2_uncoded.txt

      • all_rotation_3_uncoded.txt

      • all_score_encoded.txt

      • all_wdith_encoded.txt

      • all_height_encoded.txt

      • all_depth_encoded.txt

      • all_translation_1_encoded.txt

      • all_translation_2_encoded.txt

      • all_translation_3_encoded.txt

      • all_rotation_1_encoded.txt

      • all_rotation_2_encoded.txt

      • all_rotation_3_encoded.txt

      • data_num_and_sum.json

      • all_score_uncoded_distribution.png

      • all_width_uncoded_distribution.png

      • all_height_uncoded_distribution.png

      • all_depth_uncoded_distribution.png

      • all_translation_1_uncoded_distribution.png

      • all_translation_2_uncoded_distribution.png

      • all_translation_3_uncoded_distribution.png

      • all_rotation_1_uncoded_distribution.png

      • all_rotation_2_uncoded_distribution.png

      • all_rotation_3_uncoded_distribution.png

      • all_score_encoded_distribution.png

      • all_width_encoded_distribution.png

      • all_height_encoded_distribution.png

      • all_depth_encoded_distribution.png

      • all_translation_1_encoded_distribution.png

      • all_translation_2_encoded_distribution.png

      • all_translation_3_encoded_distribution.png

      • all_rotation_1_encoded_distribution.png

      • all_rotation_2_encoded_distribution.png

      • all_rotation_3_encoded_distribution.png

  • grasp_tsvs_train

    • grasp_tsvs_train_kinect_rect_100
    • grasp_tsvs_train_kinect_6d_100
      • 0000
      • 0001
        • 0000.tsv
        • 0001.tsv
          • FLAG(19 bins)
            • 0(no meaning)
            • train=00(test=01)
            • kinect=00(realsense=01)
            • rect=01(6d=00)
            • scene=0000-0100
            • ann=0000-0256
            • id=00(xx)
            • num=00-09
          • text(select one prompt from the prompt repertory (30 prompts))
            • scene description: all_obj_names
            • the name of grasped object
            • grasp info(s,w,h,d,t1,t2,t3,r1,r2,r3)
            • example: This is a picture of {all_obj_names}. And the {object_name} is to be grasped. The score of the grasp is {score}. The width of the grasp is {width}. The height of the grasp is {height}. The depth of the grasp is {depth}. The translation_matrix of the grasp is {translation}. The rotation_matrix is {rotation}.
          • image(base64)
          • image_width
          • image_height
          • the point cloud file path of the scene
        • ....
        • 0255.tsv
      • ....
      • 0099
  • grasp_dataloder_config

    • grasp_dataloder_config_kinect_rect_100
    • grasp_dataloder_config_kinect_6d_100
      • json(train:valid=9:1)
        • train.json
        • valid.json
      • sentencepiece.bpe.model
      • dict.txt
  • else

    • all_obj_names_and_ids_final.json
    • text_templates_6d_50.json
  • grasp_train_output

    • grasp_train_output_kinect_rect_100
    • grasp_train_output_kinect_6d_100
      • 0000
        • model_savedir
          • checkpoint_1_5000.pt
          • checkpoint_1_10000.pt
          • checkpoint_1_15000.pt
          • checkpoint_1_20000.pt
          • checkpoint_1_25000.pt
          • checkpoint_1_30000.pt
          • checkpoint_last.pt
        • tensorboard_logdir
          • train
            • events.out.tfevents.xxxxxxx
          • train_inner
            • events.out.tfevents.xxxxxxx
            • events.out.tfevents.xxxxxxx
            • events.out.tfevents.xxxxxxx
      • 0001
      • ....
  • grasp_tsvs_predicted

    • grasp_tsvs_predicted_kinect_rect_100
    • grasp_tsvs_predicted_kinect_6d_100
      • 0000

      • 0001

        • 0000
        • 0001
          • grasp_05_00.tsv(grasp_id_num.tsv)
          • grasp_05_01.tsv
            • score
            • width
            • height
            • depth
            • translation_1
            • translation_2
            • translation_3
            • rotation_1
            • rotation_2
            • rotation_3
          • ....
          • grasp_05_09.tsv
          • grasp_11_00.tsv
          • grasp_11_01.tsv
          • ....
        • ....
        • 0256
      • ....

      • 0099

      • all_score_uncoded.txt

      • all_width_uncoded.txt

      • all_height_uncoded.txt

      • all_depth_uncoded.txt

      • all_translation_1_uncoded.txt

      • all_translation_2_uncoded.txt

      • all_translation_3_uncoded.txt

      • all_rotation_1_uncoded.txt

      • all_rotation_2_uncoded.txt

      • all_rotation_3_uncoded.txt

      • all_score_encoded.txt

      • all_wdith_encoded.txt

      • all_height_encoded.txt

      • all_depth_encoded.txt

      • all_translation_1_encoded.txt

      • all_translation_2_encoded.txt

      • all_translation_3_encoded.txt

      • all_rotation_1_encoded.txt

      • all_rotation_2_encoded.txt

      • all_rotation_3_encoded.txt

      • data_num_and_sum.json

      • all_score_uncoded_distribution.png

      • all_width_uncoded_distribution.png

      • all_height_uncoded_distribution.png

      • all_depth_uncoded_distribution.png

      • all_translation_1_uncoded_distribution.png

      • all_translation_2_uncoded_distribution.png

      • all_translation_3_uncoded_distribution.png

      • all_rotation_1_uncoded_distribution.png

      • all_rotation_2_uncoded_distribution.png

      • all_rotation_3_uncoded_distribution.png

      • all_score_encoded_distribution.png

      • all_width_encoded_distribution.png

      • all_height_encoded_distribution.png

      • all_depth_encoded_distribution.png

      • all_translation_1_encoded_distribution.png

      • all_translation_2_encoded_distribution.png

      • all_translation_3_encoded_distribution.png

      • all_rotation_1_encoded_distribution.png

      • all_rotation_2_encoded_distribution.png

      • all_rotation_3_encoded_distribution.png

  • grasp_npys_eval

    • grasp_npys_eval_kinect_rect_100
    • grasp_npys_eval_kinect_6d_100
      • 0000-0099
        • 0000.npy-0255.npy

Some Details About Dataset

Rotation Matrix(3*3) to Euler Angle(3*1)

import transforms3d as tfs
rotation_matrix = data["rotation_matrix"] # 3*3
rotation = list(tfs.euler.mat2euler(rotation_matrix, 'sxyz')) # 3*1

Adaptive Binning Encoding:KBinsDiscretizer

from sklearn.preprocessing import KBinsDiscretizer
all_score_encoded = KBinsDiscretizer(n_bins=256, encode='ordinal', strategy='quantile').fit_transform(all_score.reshape(-1, 1))

Scene Description Template

{
    "1":"This image showcases a scene with various objects, including {all_obj_names}. Among them, the object to be grasped is {object_name}. The grasp has a score of {score} and dimensions of {width}x{height}. The translation matrix for the grasp is {translation}, while the rotation matrix is {rotation}.",

    "2":"In this picture, a collection of objects is captured, comprising {all_obj_names}. The object designated for grasping is {object_name}, featuring a grasp score of {score}. The grasp exhibits a width of {width} units and a height of {height} units. The translation matrix and rotation matrix for the grasp are {translation} and {rotation}, respectively.",

    "3":"Observe this image containing several objects, namely {all_obj_names}. Our focus lies on grasping the object labeled as {object_name}, which possesses a grasp score of {score}. The dimensions of the grasp measure {width} units in width and {height} units in height. The translation matrix assigned to the grasp is {translation}, accompanied by the corresponding rotation matrix {rotation}."
}

Some GraspNet Examples

cd graspnet_examples

# change the path of graspnet root

# How to load labels from graspnet.
python3 exam_loadGrasp.py

# How to convert between 6d and rectangle grasps.
python3 exam_convert.py

# Check the completeness of the data.
python3 exam_check_data.py

# you can also run other examples

Change Log

1.0.0

  • 2023.10.01
  • add graspinfo and scene description to the text

1.0.1

  • 2023.11.01
  • add point clouds

1.1.0

  • 2023.11.10
  • reconstruct dataset, delete grasp_tsvs_real_encoded folder

  • 2023.11.25
  • generate grasp_train_tsvs_kinect_6d_100 and grasp_train_tsvs_kinect_rect_100

TO DO

  • check_grasp_tsvs_predicted
  • check_grasp_npys_eval
  • eval vis and save the final results
  • test generate_grasp_tsvs_predicted
  • test generate_grasp_npys_eval
  • eval

About

PID-GraspNet: A Large-Scale Pointcloud-Image-Description Dataset for Robotic Grasping based on GraspNet-1Billion

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published