This is a baselines DDPG implementation with added Robotic Auxiliary Losses
To install, first set up the baselines repository on your workstation (https://github.com/openai/baselines/)
Afterwards, go to baselines/baselines/ddpg and clone this repository (NOTE: this will overwrite the original ddpg implementation!)
Example training run:
python -m baselines.ddpg.main --env-id Humanoid-v2 --aux-tasks 'repeat' 'caus' --log-dir /tmp/RobAuxLossTest
- Original paper: https://arxiv.org/abs/1509.02971
- Baselines post: https://blog.openai.com/better-exploration-with-parameter-noise/
python -m baselines.ddpg.main
runs the algorithm for 1M frames = 10M timesteps on a Mujoco environment. See help (-h
) for more options.