Skip to content

Commit

Permalink
update readme for v4
Browse files Browse the repository at this point in the history
  • Loading branch information
SimonBlanke committed Dec 1, 2021
1 parent 61da543 commit 8f61e12
Showing 1 changed file with 1 addition and 64 deletions.
65 changes: 1 addition & 64 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,7 @@ Hyperactive features a collection of optimization algorithms that can be used fo
<ul>
<li><a href="./examples/tested_and_supported_packages/multiprocessing_example.py">Multiprocessing</a></li>
<li><a href="./examples/tested_and_supported_packages/joblib_example.py">Joblib</a></li>
<li>Pathos</li>
</ul>
</td>
<td>
Expand Down Expand Up @@ -653,70 +654,6 @@ You can read more about each optimization-strategy and its parameters in the [Op
</details>


<details>
<summary><b> Progress Board</b></summary>

The progress board enables the visualization of search data during the optimization run. This will help you to understand what is happening during the optimization and give an overview of the explored parameter sets and scores.


- filter_file
- Possible parameter types: (None, True)
- If the filter_file-parameter is True Hyperactive will create a file in the current directory, which allows the filtering of parameters or the score by setting an upper or lower bound.


The following script provides an example:

```python
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.datasets import load_wine

from hyperactive import Hyperactive
# import the ProgressBoard
from hyperactive.dashboards import ProgressBoard

data = load_wine()
X, y = data.data, data.target


def model(opt):
gbr = GradientBoostingRegressor(
n_estimators=opt["n_estimators"],
max_depth=opt["max_depth"],
min_samples_split=opt["min_samples_split"],
)
scores = cross_val_score(gbr, X, y, cv=3)

return scores.mean()


search_space = {
"n_estimators": list(range(50, 150, 5)),
"max_depth": list(range(2, 12)),
"min_samples_split": list(range(2, 22)),
}

# create an instance of the ProgressBoard
progress_board = ProgressBoard()

hyper = Hyperactive()

# pass the instance of the ProgressBoard to .add_search(...)
hyper.add_search(
model,
search_space,
n_iter=120,
progress_board=progress_board,
)

# a terminal will open, which opens a dashboard in your browser
hyper.run()
```

</details>




<br>

Expand Down

0 comments on commit 8f61e12

Please sign in to comment.