说明:使用视觉-惯性和纯激光里程计,通过因子图后处理全局位姿。其中平移的权重激光比例高,旋转的权重视觉-惯性比例高 其中视觉前端特征点使用激光点云和三角化共同估计深度(添加mask-rcnn剔除动态特征点), 激光前端采用帧到局部地图的特征最近邻检索匹配,后端优化计算雅克比矩阵,迭代优化,保证构建地图的精度 传感器类型:大恒工业相机、Xsens惯性传感器、VLP-32激光雷达、松灵机器人底盘
This work is based on f-loam and VINS-Mono, On this basis, We use the laser point to obtain the depth and factor map and optimize the way to realize the pose estimation.
This code is modified from F-LOAM and VINS-Mono and SC-A-LOAM.
- [Ubuntu-16.04]
- [ROS-kinetic]
- [Ceres-2.0.0]
- [OpenCV-3.3.1]
- [PCL-1.7.2]
- [gtsam-4.0.2]
- [Eigen-3.3.7]
- [OpenMP]
cd ~/catkin_ws/src
git clone https://github.com/GuoFeng-X/Sensor_Fusion.git
cd ..
catkin_make -j4
cd catkin_ws
source devel/setup.bash
roslaunch Sensor_fusion module_visual.launch
cd catkin_ws
source devel/setup.bash
roslaunch Sensor_fusion module_fsloam.launch
rosbag plag kitti_07.bag --pause --clock -r0.5
Using database KITTI-07 run this code.
下载基于ROS话题发布的mask-rcnn前端代码。mask-rcnn ros版本
在动态场景ADVIO数据集下测试
Copy the above code to the Sensor_fusion folder
cd catkin_ws/src/Sensor_fusion
unzip Mask-RCNN
cd script/mask_rcnn
./run_build.sh
cd detectron2/Visual_Frand
./run_detect_mask.sh
cd catkin_ws
source devel/setup.bash
roslaunch Sensor_fusion module_visual_mask.launch
rosbag plag ADVIO-05.bag --pause -r0.5
Thanks for F-LOAM and VINS-Mono.
- F-LOAM(Wang H, Wang C, Chen C L, et al. F-loam: Fast lidar odometry and mapping.)
- VINS-Mono(Tong Q, Peiliang L, et al. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator.)