Skip to content
This repository has been archived by the owner on Oct 18, 2020. It is now read-only.

This change uses tensorflow directly #31

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
300 changes: 153 additions & 147 deletions ann_visualizer/visualize.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,180 +27,186 @@ def ann_viz(model, view=True, filename="network.gv", title="My Neural Network"):

title: A title for the graph
"""
from graphviz import Digraph;
import keras;
from keras.models import Sequential;
from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten;
import json;
input_layer = 0;
hidden_layers_nr = 0;
layer_types = [];
hidden_layers = [];
output_layer = 0;
from graphviz import Digraph
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, Activation, Dense
from tensorflow.python.keras.layers.core import Dropout, Flatten
# import keras
input_layer = 0
hidden_layers_nr = 0
layer_types = []
hidden_layers = []
output_layer = 0
for layer in model.layers:
if(layer == model.layers[0]):
input_layer = int(str(layer.input_shape).split(",")[1][1:-1]);
hidden_layers_nr += 1;
if (type(layer) == keras.layers.core.Dense):
hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]));
layer_types.append("Dense");
if layer == model.layers[0]:
input_layer = int(str(layer.input_shape).split(",")[1][1:-1])
hidden_layers_nr += 1
if type(layer) == Dense:
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Perhaps, rewrite this as:

Suggested change
if type(layer) == Dense:
if isinstance(Dense, layer):

hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]))
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a bit complex for noobs to read, would be nice to simplify it.

layer_types.append("Dense")
else:
hidden_layers.append(1);
if (type(layer) == keras.layers.convolutional.Conv2D):
layer_types.append("Conv2D");
elif (type(layer) == keras.layers.pooling.MaxPooling2D):
layer_types.append("MaxPooling2D");
elif (type(layer) == keras.layers.core.Dropout):
layer_types.append("Dropout");
elif (type(layer) == keras.layers.core.Flatten):
layer_types.append("Flatten");
elif (type(layer) == keras.layers.core.Activation):
layer_types.append("Activation");
hidden_layers.append(1)
if type(layer) == Conv2D:
layer_types.append("Conv2D")
elif type(layer) == MaxPooling2D:
layer_types.append("MaxPooling2D")
elif type(layer) == Dropout:
layer_types.append("Dropout")
elif type(layer) == Flatten:
layer_types.append("Flatten")
elif type(layer) == Activation:
Comment on lines +48 to +56
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ditto!

layer_types.append("Activation")
else:
if(layer == model.layers[-1]):
output_layer = int(str(layer.output_shape).split(",")[1][1:-1]);
if (layer == model.layers[-1]):
output_layer = int(str(layer.output_shape).split(",")[1][1:-1])
else:
hidden_layers_nr += 1;
if (type(layer) == keras.layers.core.Dense):
hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]));
layer_types.append("Dense");
hidden_layers_nr += 1
if (type(layer) == Dense):
hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]))
layer_types.append("Dense")
else:
hidden_layers.append(1);
if (type(layer) == keras.layers.convolutional.Conv2D):
layer_types.append("Conv2D");
elif (type(layer) == keras.layers.pooling.MaxPooling2D):
layer_types.append("MaxPooling2D");
elif (type(layer) == keras.layers.core.Dropout):
layer_types.append("Dropout");
elif (type(layer) == keras.layers.core.Flatten):
layer_types.append("Flatten");
elif (type(layer) == keras.layers.core.Activation):
layer_types.append("Activation");
last_layer_nodes = input_layer;
nodes_up = input_layer;
if(type(model.layers[0]) != keras.layers.core.Dense):
last_layer_nodes = 1;
nodes_up = 1;
input_layer = 1;
hidden_layers.append(1)
if (type(layer) == Conv2D):
layer_types.append("Conv2D")
elif (type(layer) == MaxPooling2D):
layer_types.append("MaxPooling2D")
elif (type(layer) == Dropout):
layer_types.append("Dropout")
elif (type(layer) == Flatten):
layer_types.append("Flatten")
elif (type(layer) == Activation):
layer_types.append("Activation")
Comment on lines +68 to +77
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

last_layer_nodes = input_layer
nodes_up = input_layer
if type(model.layers[0]) != Dense:
last_layer_nodes = 1
nodes_up = 1
input_layer = 1

g = Digraph('g', filename=filename);
n = 0;
g.graph_attr.update(splines="false", nodesep='1', ranksep='2');
#Input Layer
g = Digraph('g', filename=filename)
n = 0
g.graph_attr.update(splines="false", nodesep='1', ranksep='2')
# Input Layer
with g.subgraph(name='cluster_input') as c:
if(type(model.layers[0]) == keras.layers.core.Dense):
the_label = title+'\n\n\n\nInput Layer';
if (int(str(model.layers[0].input_shape).split(",")[1][1:-1]) > 10):
the_label += " (+"+str(int(str(model.layers[0].input_shape).split(",")[1][1:-1]) - 10)+")";
input_layer = 10;
if type(model.layers[0]) == Dense:
the_label = title + '\n\n\n\nInput Layer'
if int(str(model.layers[0].input_shape).split(",")[1][1:-1]) > 10:
the_label += " (+" + str(int(str(model.layers[0].input_shape).split(",")[1][1:-1]) - 10) + ")"
input_layer = 10
c.attr(color='white')
for i in range(0, input_layer):
n += 1;
c.node(str(n));
n += 1
c.node(str(n))
c.attr(label=the_label)
c.attr(rank='same');
c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle");
c.attr(rank='same')
c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle")

elif(type(model.layers[0]) == keras.layers.convolutional.Conv2D):
#Conv2D Input visualizing
the_label = title+'\n\n\n\nInput Layer';
c.attr(color="white", label=the_label);
c.node_attr.update(shape="square");
pxls = str(model.layers[0].input_shape).split(',');
clr = int(pxls[3][1:-1]);
elif (type(model.layers[0]) == Conv2D):
# Conv2D Input visualizing
the_label = title + '\n\n\n\nInput Layer'
c.attr(color="white", label=the_label)
c.node_attr.update(shape="square")
pxls = str(model.layers[0].input_shape).split(',')
clr = int(pxls[3][1:-1])
if (clr == 1):
clrmap = "Grayscale";
the_color = "black:white";
clrmap = "Grayscale"
the_color = "black:white"
elif (clr == 3):
clrmap = "RGB";
the_color = "#e74c3c:#3498db";
clrmap = "RGB"
the_color = "#e74c3c:#3498db"
else:
clrmap = "";
c.node_attr.update(fontcolor="white", fillcolor=the_color, style="filled");
n += 1;
c.node(str(n), label="Image\n"+pxls[1]+" x"+pxls[2]+" pixels\n"+clrmap, fontcolor="white");
clrmap = ""
c.node_attr.update(fontcolor="white", fillcolor=the_color, style="filled")
n += 1
c.node(str(n), label="Image\n" + pxls[1] + " x" + pxls[2] + " pixels\n" + clrmap, fontcolor="white")
else:
raise ValueError("ANN Visualizer: Layer not supported for visualizing");
raise ValueError("ANN Visualizer: Layer not supported for visualizing")
for i in range(0, hidden_layers_nr):
with g.subgraph(name="cluster_"+str(i+1)) as c:
with g.subgraph(name="cluster_" + str(i + 1)) as c:
if (layer_types[i] == "Dense"):
c.attr(color='white');
c.attr(rank='same');
#If hidden_layers[i] > 10, dont include all
the_label = "";
c.attr(color='white')
c.attr(rank='same')
# If hidden_layers[i] > 10, dont include all
the_label = ""
if (int(str(model.layers[i].output_shape).split(",")[1][1:-1]) > 10):
the_label += " (+"+str(int(str(model.layers[i].output_shape).split(",")[1][1:-1]) - 10)+")";
hidden_layers[i] = 10;
c.attr(labeljust="right", labelloc="b", label=the_label);
the_label += " (+" + str(int(str(model.layers[i].output_shape).split(",")[1][1:-1]) - 10) + ")"
hidden_layers[i] = 10
c.attr(labeljust="right", labelloc="b", label=the_label)
for j in range(0, hidden_layers[i]):
n += 1;
c.node(str(n), shape="circle", style="filled", color="#3498db", fontcolor="#3498db");
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), str(n));
last_layer_nodes = hidden_layers[i];
nodes_up += hidden_layers[i];
n += 1
c.node(str(n), shape="circle", style="filled", color="#3498db", fontcolor="#3498db")
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), str(n))
last_layer_nodes = hidden_layers[i]
nodes_up += hidden_layers[i]
elif (layer_types[i] == "Conv2D"):
c.attr(style='filled', color='#5faad0');
n += 1;
kernel_size = str(model.layers[i].get_config()['kernel_size']).split(',')[0][1] + "x" + str(model.layers[i].get_config()['kernel_size']).split(',')[1][1 : -1];
filters = str(model.layers[i].get_config()['filters']);
c.node("conv_"+str(n), label="Convolutional Layer\nKernel Size: "+kernel_size+"\nFilters: "+filters, shape="square");
c.node(str(n), label=filters+"\nFeature Maps", shape="square");
g.edge("conv_"+str(n), str(n));
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), "conv_"+str(n));
last_layer_nodes = 1;
nodes_up += 1;
c.attr(style='filled', color='#5faad0')
n += 1
kernel_size = str(model.layers[i].get_config()['kernel_size']).split(',')[0][1] + "x" + \
str(model.layers[i].get_config()['kernel_size']).split(',')[1][1: -1]
filters = str(model.layers[i].get_config()['filters'])
c.node("conv_" + str(n),
label="Convolutional Layer\nKernel Size: " + kernel_size + "\nFilters: " + filters,
shape="square")
c.node(str(n), label=filters + "\nFeature Maps", shape="square")
g.edge("conv_" + str(n), str(n))
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), "conv_" + str(n))
last_layer_nodes = 1
nodes_up += 1
elif (layer_types[i] == "MaxPooling2D"):
c.attr(color="white");
n += 1;
pool_size = str(model.layers[i].get_config()['pool_size']).split(',')[0][1] + "x" + str(model.layers[i].get_config()['pool_size']).split(',')[1][1 : -1];
c.node(str(n), label="Max Pooling\nPool Size: "+pool_size, style="filled", fillcolor="#8e44ad", fontcolor="white");
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), str(n));
last_layer_nodes = 1;
nodes_up += 1;
c.attr(color="white")
n += 1
pool_size = str(model.layers[i].get_config()['pool_size']).split(',')[0][1] + "x" + \
str(model.layers[i].get_config()['pool_size']).split(',')[1][1: -1]
c.node(str(n), label="Max Pooling\nPool Size: " + pool_size, style="filled", fillcolor="#8e44ad",
fontcolor="white")
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), str(n))
last_layer_nodes = 1
nodes_up += 1
elif (layer_types[i] == "Flatten"):
n += 1;
c.attr(color="white");
c.node(str(n), label="Flattening", shape="invtriangle", style="filled", fillcolor="#2c3e50", fontcolor="white");
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), str(n));
last_layer_nodes = 1;
nodes_up += 1;
n += 1
c.attr(color="white")
c.node(str(n), label="Flattening", shape="invtriangle", style="filled", fillcolor="#2c3e50",
fontcolor="white")
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), str(n))
last_layer_nodes = 1
nodes_up += 1
elif (layer_types[i] == "Dropout"):
n += 1;
c.attr(color="white");
c.node(str(n), label="Dropout Layer", style="filled", fontcolor="white", fillcolor="#f39c12");
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), str(n));
last_layer_nodes = 1;
nodes_up += 1;
n += 1
c.attr(color="white")
c.node(str(n), label="Dropout Layer", style="filled", fontcolor="white", fillcolor="#f39c12")
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), str(n))
last_layer_nodes = 1
nodes_up += 1
elif (layer_types[i] == "Activation"):
n += 1;
c.attr(color="white");
fnc = model.layers[i].get_config()['activation'];
c.node(str(n), shape="octagon", label="Activation Layer\nFunction: "+fnc, style="filled", fontcolor="white", fillcolor="#00b894");
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), str(n));
last_layer_nodes = 1;
nodes_up += 1;

n += 1
c.attr(color="white")
fnc = model.layers[i].get_config()['activation']
c.node(str(n), shape="octagon", label="Activation Layer\nFunction: " + fnc, style="filled",
fontcolor="white", fillcolor="#00b894")
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), str(n))
last_layer_nodes = 1
nodes_up += 1

with g.subgraph(name='cluster_output') as c:
if (type(model.layers[-1]) == keras.layers.core.Dense):
if (type(model.layers[-1]) == Dense):
c.attr(color='white')
c.attr(rank='same');
c.attr(labeljust="1");
for i in range(1, output_layer+1):
n += 1;
c.node(str(n), shape="circle", style="filled", color="#e74c3c", fontcolor="#e74c3c");
for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
g.edge(str(h), str(n));
c.attr(rank='same')
c.attr(labeljust="1")
for i in range(1, output_layer + 1):
n += 1
c.node(str(n), shape="circle", style="filled", color="#e74c3c", fontcolor="#e74c3c")
for h in range(nodes_up - last_layer_nodes + 1, nodes_up + 1):
g.edge(str(h), str(n))
c.attr(label='Output Layer', labelloc="bottom")
c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle");
c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle")

g.attr(arrowShape="none");
g.edge_attr.update(arrowhead="none", color="#707070");
g.attr(arrowShape="none")
g.edge_attr.update(arrowhead="none", color="#707070")
if view == True:
g.view();
g.view()