-
Notifications
You must be signed in to change notification settings - Fork 2
/
01_1_train_Median.py
299 lines (229 loc) · 8.14 KB
/
01_1_train_Median.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# %% [markdown]
# # Variational Autoencoder
# %% tags=["hide-input"]
import logging
import pandas as pd
from IPython.display import display
import pimmslearn
import pimmslearn.model
import pimmslearn.models as models
import pimmslearn.nb
from pimmslearn.io import datasplits
logger = pimmslearn.logging.setup_logger(logging.getLogger('pimmslearn'))
logger.info("Median Imputation")
figures = {} # collection of ax or figures
# %% tags=["hide-input"]
# catch passed parameters
args = None
args = dict(globals()).keys()
# %% [markdown]
# Papermill script parameters:
# %% tags=["parameters"]
# files and folders
folder_experiment: str = 'runs/example' # Datasplit folder with data for experiment
file_format: str = 'csv' # file format of create splits, default pickle (pkl)
fn_rawfile_metadata: str = 'data/dev_datasets/HeLa_6070/files_selected_metadata_N50.csv' # Metadata for samples
# model
sample_idx_position: int = 0 # position of index which is sample ID
model_key: str = 'Median' # model key (lower cased version will be used for file names)
model: str = 'Median' # model name
save_pred_real_na: bool = True # Save all predictions for real na
# metadata -> defaults for metadata extracted from machine data
meta_date_col: str = None # date column in meta data
meta_cat_col: str = None # category column in meta data
# %% [markdown]
# Some argument transformations
# %% tags=["hide-input"]
args = pimmslearn.nb.get_params(args, globals=globals())
args
# %% tags=["hide-input"]
args = pimmslearn.nb.args_from_dict(args)
args
# %% [markdown]
# Some naming conventions
# %% tags=["hide-input"]
TEMPLATE_MODEL_PARAMS = 'model_params_{}.json'
# %% [markdown]
# ## Load data in long format
# %% tags=["hide-input"]
data = datasplits.DataSplits.from_folder(args.data, file_format=args.file_format)
# %% [markdown]
# data is loaded in long format
# %% tags=["hide-input"]
data.train_X.sample(5)
# %% [markdown]
# Infer index names from long format
# %% tags=["hide-input"]
index_columns = list(data.train_X.index.names)
sample_id = index_columns.pop(args.sample_idx_position)
if len(index_columns) == 1:
index_column = index_columns.pop()
index_columns = None
logger.info(f"{sample_id = }, single feature: {index_column = }")
else:
logger.info(f"{sample_id = }, multiple features: {index_columns = }")
if not index_columns:
index_columns = [sample_id, index_column]
else:
raise NotImplementedError("More than one feature: Needs to be implemented. see above logging output.")
# %% [markdown]
# load meta data for splits
# %% tags=["hide-input"]
if args.fn_rawfile_metadata:
df_meta = pd.read_csv(args.fn_rawfile_metadata, index_col=0)
display(df_meta.loc[data.train_X.index.levels[0]])
else:
df_meta = None
# %% [markdown]
# ## Initialize Comparison
#
# - replicates idea for truely missing values: Define truth as by using n=3 replicates to impute
# each sample
# - real test data:
# - Not used for predictions or early stopping.
# - [x] add some additional NAs based on distribution of data
# %% tags=["hide-input"]
freq_feat = pimmslearn.io.datasplits.load_freq(args.data)
freq_feat.head() # training data
# %% [markdown]
# ### Produce some addional fake samples
# %% [markdown]
# The validation fake NA is used to by all models to evaluate training performance.
# %% tags=["hide-input"]
val_pred_fake_na = data.val_y.to_frame(name='observed')
val_pred_fake_na
# %% tags=["hide-input"]
test_pred_fake_na = data.test_y.to_frame(name='observed')
test_pred_fake_na.describe()
# %% [markdown]
# ## Data in wide format
#
# - Autoencoder need data in wide format
# %% tags=["hide-input"]
data.to_wide_format()
args.M = data.train_X.shape[-1]
data.train_X.head()
# %% [markdown]
# ### Add interpolation performance
# %% tags=["hide-input"]
# interpolated = pimmslearn.pandas.interpolate(wide_df = data.train_X)
# val_pred_fake_na['interpolated'] = interpolated
# test_pred_fake_na['interpolated'] = interpolated
# del interpolated
# test_pred_fake_na
# %% tags=["hide-input"]
# Add median pred performance
args.n_params = data.train_X.shape[-1]
medians_train = data.train_X.median()
medians_train.name = args.model
pred = medians_train
val_pred_fake_na = val_pred_fake_na.join(medians_train)
test_pred_fake_na = test_pred_fake_na.join(medians_train)
val_pred_fake_na
# %% tags=["hide-input"]
if args.save_pred_real_na:
mask = data.train_X.isna().stack()
idx_real_na = mask.index[mask]
idx_real_na = (idx_real_na
.drop(val_pred_fake_na.index)
.drop(test_pred_fake_na.index))
# hacky, but works:
pred_real_na = (pd.Series(0, index=idx_real_na, name='placeholder')
.to_frame()
.join(medians_train)
.drop('placeholder', axis=1))
# pred_real_na.name = 'intensity'
display(pred_real_na)
pred_real_na.to_csv(args.out_preds / f"pred_real_na_{args.model_key}.csv")
# %% [markdown]
# ### Plots
#
# %% tags=["hide-input"]
feat_freq_val = val_pred_fake_na['observed'].groupby(level=-1).count()
feat_freq_val.name = 'freq_val'
ax = feat_freq_val.plot.box()
# %% tags=["hide-input"]
# # scatter plot between overall feature freq and split freq
# freq_feat.to_frame('overall').join(feat_freq_val).plot.scatter(x='overall', y='freq_val')
# %% tags=["hide-input"]
feat_freq_val.value_counts().sort_index().head() # require more than one feat?
# %% tags=["hide-input"]
errors_val = val_pred_fake_na.drop('observed', axis=1).sub(val_pred_fake_na['observed'], axis=0)
errors_val = errors_val.abs().groupby(level=-1).mean()
errors_val = errors_val.join(freq_feat).sort_values(by='freq', ascending=True)
errors_val_smoothed = errors_val.copy() # .loc[feat_freq_val > 1]
errors_val_smoothed[errors_val.columns[:-
1]] = errors_val[errors_val.columns[:-
1]].rolling(window=200, min_periods=1).mean()
ax = errors_val_smoothed.plot(x='freq', figsize=(15, 10))
# errors_val_smoothed
# %% tags=["hide-input"]
errors_val = val_pred_fake_na.drop('observed', axis=1).sub(val_pred_fake_na['observed'], axis=0)
errors_val.abs().groupby(level=-1).agg(['mean', 'count'])
# %% tags=["hide-input"]
errors_val
# %% [markdown]
# ## Comparisons
# %% [markdown]
# ### Validation data
#
# %% tags=["hide-input"]
# papermill_description=metrics
d_metrics = models.Metrics()
# %% [markdown]
# The fake NA for the validation step are real test data (not used for training nor early stopping)
# %% tags=["hide-input"]
added_metrics = d_metrics.add_metrics(val_pred_fake_na, 'valid_fake_na')
added_metrics
# %% [markdown]
# ### Test Datasplit
#
# Fake NAs : Artificially created NAs. Some data was sampled and set
# explicitly to misssing before it was fed to the model for
# reconstruction.
# %% tags=["hide-input"]
added_metrics = d_metrics.add_metrics(test_pred_fake_na, 'test_fake_na')
added_metrics
# %% [markdown]
# The fake NA for the validation step are real test data (not used for training nor early stopping)
# %% tags=["hide-input"]
# %% [markdown]
# ### Save all metrics as json
# %% tags=["hide-input"]
pimmslearn.io.dump_json(d_metrics.metrics, args.out_metrics / f'metrics_{args.model_key}.json')
d_metrics
# %% tags=["hide-input"]
metrics_df = models.get_df_from_nested_dict(d_metrics.metrics, column_levels=['model', 'metric_name']).T
metrics_df
# %% [markdown]
# ## Save predictions
# %% tags=["hide-input"]
# val
fname = args.out_preds / f"pred_val_{args.model_key}.csv"
setattr(args, fname.stem, fname.as_posix()) # add [] assignment?
val_pred_fake_na.to_csv(fname)
# test
fname = args.out_preds / f"pred_test_{args.model_key}.csv"
setattr(args, fname.stem, fname.as_posix())
test_pred_fake_na.to_csv(fname)
# %% [markdown]
# ## Config
# %% tags=["hide-input"]
figures # switch to fnames?
# %% tags=["hide-input"]
args.dump(fname=args.out_models / f"model_config_{args.model_key}.yaml")
args