-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6959820
commit c59fb11
Showing
9 changed files
with
655 additions
and
1 deletion.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,23 @@ | ||
# strikethrough-generation | ||
# Synthetic Strikethrough Generation | ||
|
||
This package generates synthetic strikethrough and applies it to a given word image. Strikethrough strokes are generated based on image statistics. | ||
|
||
To get started, install the required packages (cf. [requirements.txt](requirements.txt)) and run [example.py](example.py). | ||
|
||
### Generation Example | ||
Input|Output | ||
---|--- | ||
![clean word word image spelling 'landlord'](0004.png)|![word image struck through with a wavy line](0004_struck.png) | ||
## License | ||
MIT License, see [LICENSE](LICENSE) for details. | ||
|
||
## Citation | ||
If you find this work useful, please consider citing this repository or the related paper: | ||
``` | ||
@INPROCEEDINGS{heil2021strikethrough, | ||
author={Heil, Raphaela and Vats, Ekta and Hast, Anders}, | ||
booktitle={2021 International Conference on Document Analysis and Recognition (ICDAR)}, | ||
title={{Strikethrough Removal from Handwritten Words Using CycleGANs}}, | ||
year={2021}, | ||
pubstate={to appear}} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
import cv2 | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
from strikethrough_generator import StrokeType, StrikeThroughGenerator | ||
|
||
if __name__ == "__main__": | ||
stg = StrikeThroughGenerator(drawFromStrokeTypes=[StrokeType.ZIG_ZAG]) | ||
original = cv2.imread('0004.png',cv2.CV_8UC1) | ||
output, strike_type = stg.generateStruckWord(original) | ||
|
||
output, _ = stg.generateStruckWord(original) | ||
|
||
plt.imshow(output, cmap="gray") | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
opencv-python>=4.5.1.48 | ||
numpy>=1.19.5 | ||
imgaug>=0.4.0 | ||
scipy>=1.5.4 | ||
scikit-image>=0.17.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
from .backgroundremoval import backgroundRemoval | ||
from .core_extraction import extractCoreRegion | ||
from .generator import StrikeThroughGenerator, StrokeType, OptionsKeys | ||
|
||
__all__ = ["backgroundRemoval", "extractCoreRegion", "StrikeThroughGenerator", "StrokeType", "OptionsKeys"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
""" | ||
Code to remove background noise from a handwritten word image. Original matlab code by Anders Hast | ||
([email protected]), adapted to Python by Raphaela Heil ([email protected]). | ||
See also: P. Singh, E. Vats and A. Hast, "Learning Surrogate Models of Document Image Quality Metrics for Automated | ||
Document Image Processing," 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), 2018, pp. 67-72, | ||
doi: 10.1109/DAS.2018.14. | ||
""" | ||
|
||
from math import ceil | ||
|
||
import numpy as np | ||
from scipy import signal | ||
from skimage import filters | ||
|
||
|
||
def __calculateGaussianKernel(width=5, sigma=1.): | ||
ax = np.arange(-width // 2 + 1., width // 2 + 1.) | ||
xx, yy = np.meshgrid(ax, ax) | ||
|
||
kernel = np.exp(-0.5 * (np.square(xx) + np.square(yy)) / np.square(sigma)) | ||
|
||
return kernel / np.sum(kernel) | ||
|
||
|
||
def __calculateMaskParameters(arraySize, sz): | ||
if type(arraySize) == tuple: | ||
if sz == 0: | ||
kernelSize = ceil(max(arraySize)) | ||
else: | ||
scale = min(arraySize) / sz | ||
width = ceil(arraySize[0] / scale) | ||
height = ceil(arraySize[1] / scale) | ||
kernelSize = ceil(max((width, height))) | ||
|
||
if kernelSize % 2 == 0: | ||
kernelSize = kernelSize + 1 | ||
|
||
sigma = kernelSize / 6.0 | ||
else: | ||
if sz == 0: | ||
kernelSize = ceil(arraySize) | ||
else: | ||
scale = arraySize / sz | ||
kernelSize = ceil(arraySize / scale) | ||
|
||
if kernelSize % 2 == 0: | ||
kernelSize = kernelSize + 1 | ||
|
||
sigma = kernelSize / 6.0 | ||
|
||
return kernelSize, sigma | ||
|
||
|
||
def __applyFilters(image: np.ndarray, so, sz: int) -> np.ndarray: | ||
imageShape = image.shape | ||
N, sigma = __calculateMaskParameters(so, sz) | ||
kernel = __calculateGaussianKernel(N, sigma) | ||
divisor = signal.fftconvolve(np.ones(imageShape).astype('float'), kernel, 'same') | ||
numerator = signal.fftconvolve(image.astype('float'), kernel, 'same') | ||
filteredImage = np.divide(numerator, divisor) | ||
return filteredImage | ||
|
||
|
||
def __blurryBandpassFilter(image: np.ndarray, blurringMaskSize: int, threshold: float) -> np.ndarray: | ||
if blurringMaskSize > 1: | ||
thickMask = __applyFilters(image, blurringMaskSize, 0) | ||
else: | ||
thickMask = image | ||
|
||
p2 = __applyFilters(image, image.shape, 300) | ||
im2 = p2 - thickMask | ||
|
||
th2 = filters.threshold_otsu(p2 - thickMask) | ||
thresholdedImage = im2 > (th2 * threshold) | ||
return thresholdedImage | ||
|
||
|
||
def __thinBandpassFilter(image, noiseMaskSize, enhanceContrast) -> np.ndarray: | ||
if noiseMaskSize > 1: | ||
thinMask = __applyFilters(image, noiseMaskSize, 0) | ||
else: | ||
thinMask = image | ||
|
||
p2 = __applyFilters(image, image.shape, 100) | ||
im2 = p2 - thinMask | ||
|
||
nim2 = np.zeros(im2.shape) | ||
nim2[im2 > 0] = im2[im2 > 0] | ||
|
||
if enhanceContrast: | ||
nim2 = nim2 - nim2.min() | ||
nim2 = nim2 / nim2.max() | ||
|
||
return nim2 | ||
|
||
|
||
def backgroundRemoval(image: np.ndarray, blurringMaskSize: int, noiseMaskSize: int, threshold: float, | ||
enhanceContrast: bool) -> np.ndarray: | ||
nim1 = __blurryBandpassFilter(image, blurringMaskSize, threshold) | ||
nim2 = __thinBandpassFilter(image, noiseMaskSize, enhanceContrast) | ||
|
||
if enhanceContrast: | ||
nim2 = nim2 - nim2.min() | ||
nim2 = nim2 / nim2.max() | ||
|
||
result = 255 - (nim1 * nim2) | ||
|
||
return result |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
""" | ||
Core extraction based on: | ||
A. Papandreou, B. Gatos, | ||
Slant estimation and core-region detection for handwritten Latin words, | ||
Pattern Recognition Letters, Volume 35, 2014, Pages 16-22, ISSN 0167-8655, | ||
https://doi.org/10.1016/j.patrec.2012.08.005. | ||
Implemented by R.Heil, 2021 | ||
""" | ||
import itertools | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
|
||
|
||
def __runCountForLine__(line: np.ndarray, inkValue: int = 255) -> int: | ||
groups = [] | ||
for _, g in itertools.groupby(line, lambda x: x == inkValue): | ||
groups.append(list(g)) | ||
count = len([x for x in groups if inkValue in x]) | ||
return count | ||
|
||
|
||
def __countRuns__(image: np.ndarray) -> np.ndarray: | ||
return np.apply_along_axis(__runCountForLine__, axis=1, arr=image) | ||
|
||
|
||
def __calculateThreshold__(lines, t: float = 0.15) -> float: | ||
return t / len(lines) * sum(lines) | ||
|
||
|
||
def __findCoreRegion__(booleanHorizontalProfile: np.ndarray, horizontalBlackRunProfile: np.ndarray) -> Tuple[int, int]: | ||
total = [] | ||
borders = [] | ||
current = 0 | ||
start = 0 | ||
for i, x in enumerate(booleanHorizontalProfile): | ||
if current == 0: | ||
start = i | ||
if x == 1: | ||
current += horizontalBlackRunProfile[i] | ||
else: | ||
if current > 0: | ||
total.append(current) | ||
borders.append((start, i - 1)) | ||
current = 0 | ||
start = i + 1 | ||
if current > 0: | ||
total.append(current) | ||
borders.append((start, len(booleanHorizontalProfile) - 1)) | ||
|
||
return borders[np.argmax(total)] | ||
|
||
|
||
def extractCoreRegion(image: np.ndarray, thresholdModifier: float = 0.15) -> Tuple[int, int]: | ||
horizontalProfile = np.sum(image, 1) | ||
counts = __countRuns__(image) | ||
|
||
horizontalBlackRunProfile = counts * counts * horizontalProfile | ||
|
||
threshold = __calculateThreshold__(horizontalBlackRunProfile, thresholdModifier) | ||
booleanHorizontalProfile = (horizontalBlackRunProfile > threshold) * 1 | ||
|
||
return __findCoreRegion__(booleanHorizontalProfile, horizontalBlackRunProfile) |
Oops, something went wrong.