-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implemented yolo dataset support (#487)
* implemented yolo data loader * added yolo example configuration * fixed super call for yolo data loader * converted normalized values to pixels for yolo dataset * run pre-commit and fixed coordinate bug * fixed yolo categories indexed by zero * added readme hint for yolo format
- Loading branch information
Showing
4 changed files
with
314 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# nanodet-plus-m_416 | ||
# COCO mAP(0.5:0.95) = 0.304 | ||
# AP_50 = 0.459 | ||
# AP_75 = 0.317 | ||
# AP_small = 0.106 | ||
# AP_m = 0.322 | ||
# AP_l = 0.477 | ||
save_dir: workspace/nanodet-plus-m_416 | ||
model: | ||
weight_averager: | ||
name: ExpMovingAverager | ||
decay: 0.9998 | ||
arch: | ||
name: NanoDetPlus | ||
detach_epoch: 10 | ||
backbone: | ||
name: ShuffleNetV2 | ||
model_size: 1.0x | ||
out_stages: [2,3,4] | ||
activation: LeakyReLU | ||
fpn: | ||
name: GhostPAN | ||
in_channels: [116, 232, 464] | ||
out_channels: 96 | ||
kernel_size: 5 | ||
num_extra_level: 1 | ||
use_depthwise: True | ||
activation: LeakyReLU | ||
head: | ||
name: NanoDetPlusHead | ||
num_classes: 80 | ||
input_channel: 96 | ||
feat_channels: 96 | ||
stacked_convs: 2 | ||
kernel_size: 5 | ||
strides: [8, 16, 32, 64] | ||
activation: LeakyReLU | ||
reg_max: 7 | ||
norm_cfg: | ||
type: BN | ||
loss: | ||
loss_qfl: | ||
name: QualityFocalLoss | ||
use_sigmoid: True | ||
beta: 2.0 | ||
loss_weight: 1.0 | ||
loss_dfl: | ||
name: DistributionFocalLoss | ||
loss_weight: 0.25 | ||
loss_bbox: | ||
name: GIoULoss | ||
loss_weight: 2.0 | ||
# Auxiliary head, only use in training time. | ||
aux_head: | ||
name: SimpleConvHead | ||
num_classes: 80 | ||
input_channel: 192 | ||
feat_channels: 192 | ||
stacked_convs: 4 | ||
strides: [8, 16, 32, 64] | ||
activation: LeakyReLU | ||
reg_max: 7 | ||
|
||
class_names: &class_names ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | ||
'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', | ||
'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog', | ||
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', | ||
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | ||
'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat', | ||
'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket', | ||
'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', | ||
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', | ||
'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | ||
'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', | ||
'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', | ||
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', | ||
'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush'] | ||
|
||
data: | ||
train: | ||
name: YoloDataset | ||
img_path: coco/train2017 | ||
ann_path: coco/train2017 | ||
class_names: *class_names | ||
input_size: [416,416] #[w,h] | ||
keep_ratio: False | ||
pipeline: | ||
perspective: 0.0 | ||
scale: [0.6, 1.4] | ||
stretch: [[0.8, 1.2], [0.8, 1.2]] | ||
rotation: 0 | ||
shear: 0 | ||
translate: 0.2 | ||
flip: 0.5 | ||
brightness: 0.2 | ||
contrast: [0.6, 1.4] | ||
saturation: [0.5, 1.2] | ||
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]] | ||
val: | ||
name: YoloDataset | ||
img_path: coco/val2017 | ||
ann_path: coco/val2017 | ||
class_names: *class_names | ||
input_size: [416,416] #[w,h] | ||
keep_ratio: False | ||
pipeline: | ||
normalize: [[103.53, 116.28, 123.675], [57.375, 57.12, 58.395]] | ||
device: | ||
gpu_ids: [0] | ||
workers_per_gpu: 10 | ||
batchsize_per_gpu: 96 | ||
schedule: | ||
# resume: | ||
# load_model: | ||
optimizer: | ||
name: AdamW | ||
lr: 0.001 | ||
weight_decay: 0.05 | ||
warmup: | ||
name: linear | ||
steps: 500 | ||
ratio: 0.0001 | ||
total_epochs: 300 | ||
lr_schedule: | ||
name: CosineAnnealingLR | ||
T_max: 300 | ||
eta_min: 0.00005 | ||
val_intervals: 10 | ||
grad_clip: 35 | ||
evaluator: | ||
name: CocoDetectionEvaluator | ||
save_key: mAP | ||
log: | ||
interval: 50 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright 2023 cansik. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import logging | ||
import os | ||
import time | ||
from collections import defaultdict | ||
from typing import Optional, Sequence | ||
|
||
import cv2 | ||
import numpy as np | ||
from pycocotools.coco import COCO | ||
|
||
from .coco import CocoDataset | ||
from .xml_dataset import get_file_list | ||
|
||
|
||
class CocoYolo(COCO): | ||
def __init__(self, annotation): | ||
""" | ||
Constructor of Microsoft COCO helper class for | ||
reading and visualizing annotations. | ||
:param annotation: annotation dict | ||
:return: | ||
""" | ||
# load dataset | ||
super().__init__() | ||
self.dataset, self.anns, self.cats, self.imgs = dict(), dict(), dict(), dict() | ||
self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) | ||
dataset = annotation | ||
assert type(dataset) == dict, "annotation file format {} not supported".format( | ||
type(dataset) | ||
) | ||
self.dataset = dataset | ||
self.createIndex() | ||
|
||
|
||
class YoloDataset(CocoDataset): | ||
def __init__(self, class_names, **kwargs): | ||
self.class_names = class_names | ||
super(YoloDataset, self).__init__(**kwargs) | ||
|
||
@staticmethod | ||
def _find_image( | ||
image_prefix: str, | ||
image_types: Sequence[str] = (".png", ".jpg", ".jpeg", ".bmp", ".tiff"), | ||
) -> Optional[str]: | ||
for image_type in image_types: | ||
path = f"{image_prefix}{image_type}" | ||
if os.path.exists(path): | ||
return path | ||
return None | ||
|
||
def yolo_to_coco(self, ann_path): | ||
""" | ||
convert xml annotations to coco_api | ||
:param ann_path: | ||
:return: | ||
""" | ||
logging.info("loading annotations into memory...") | ||
tic = time.time() | ||
ann_file_names = get_file_list(ann_path, type=".txt") | ||
logging.info("Found {} annotation files.".format(len(ann_file_names))) | ||
image_info = [] | ||
categories = [] | ||
annotations = [] | ||
for idx, supercat in enumerate(self.class_names): | ||
categories.append( | ||
{"supercategory": supercat, "id": idx + 1, "name": supercat} | ||
) | ||
ann_id = 1 | ||
|
||
for idx, txt_name in enumerate(ann_file_names): | ||
ann_file = os.path.join(ann_path, txt_name) | ||
image_file = self._find_image(os.path.splitext(ann_file)[0]) | ||
|
||
if image_file is None: | ||
logging.warning(f"Could not find image for {ann_file}") | ||
continue | ||
|
||
with open(ann_file, "r") as f: | ||
lines = f.readlines() | ||
|
||
image = cv2.imread(image_file) | ||
height, width = image.shape[:2] | ||
|
||
file_name = os.path.basename(image_file) | ||
info = { | ||
"file_name": file_name, | ||
"height": height, | ||
"width": width, | ||
"id": idx + 1, | ||
} | ||
image_info.append(info) | ||
for line in lines: | ||
data = [float(t) for t in line.split(" ")] | ||
cat_id = int(data[0]) | ||
locations = np.array(data[1:]).reshape((len(data) // 2, 2)) | ||
bbox = locations[0:2] | ||
|
||
bbox[0] -= bbox[1] * 0.5 | ||
|
||
bbox = np.round(bbox * np.array([width, height])).astype(int) | ||
x, y = bbox[0][0], bbox[0][1] | ||
w, h = bbox[1][0], bbox[1][1] | ||
|
||
if cat_id >= len(self.class_names): | ||
logging.warning( | ||
f"Category {cat_id} is not defined in config ({txt_name})" | ||
) | ||
continue | ||
|
||
if w < 0 or h < 0: | ||
logging.warning( | ||
"WARNING! Find error data in file {}! Box w and " | ||
"h should > 0. Pass this box annotation.".format(txt_name) | ||
) | ||
continue | ||
|
||
coco_box = [max(x, 0), max(y, 0), min(w, width), min(h, height)] | ||
ann = { | ||
"image_id": idx + 1, | ||
"bbox": coco_box, | ||
"category_id": cat_id + 1, | ||
"iscrowd": 0, | ||
"id": ann_id, | ||
"area": coco_box[2] * coco_box[3], | ||
} | ||
annotations.append(ann) | ||
ann_id += 1 | ||
|
||
coco_dict = { | ||
"images": image_info, | ||
"categories": categories, | ||
"annotations": annotations, | ||
} | ||
logging.info( | ||
"Load {} txt files and {} boxes".format(len(image_info), len(annotations)) | ||
) | ||
logging.info("Done (t={:0.2f}s)".format(time.time() - tic)) | ||
return coco_dict | ||
|
||
def get_data_info(self, ann_path): | ||
""" | ||
Load basic information of dataset such as image path, label and so on. | ||
:param ann_path: coco json file path | ||
:return: image info: | ||
[{'file_name': '000000000139.jpg', | ||
'height': 426, | ||
'width': 640, | ||
'id': 139}, | ||
... | ||
] | ||
""" | ||
coco_dict = self.yolo_to_coco(ann_path) | ||
self.coco_api = CocoYolo(coco_dict) | ||
self.cat_ids = sorted(self.coco_api.getCatIds()) | ||
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} | ||
self.cats = self.coco_api.loadCats(self.cat_ids) | ||
self.img_ids = sorted(self.coco_api.imgs.keys()) | ||
img_info = self.coco_api.loadImgs(self.img_ids) | ||
return img_info |