Skip to content

Commit

Permalink
chore: rename
Browse files Browse the repository at this point in the history
  • Loading branch information
brucexc committed Dec 2, 2024
1 parent 1bb302f commit 9a50aa1
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions REPs/REP-54.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,34 +44,34 @@ Where:
- $E_i$ is the stability score of Node $i$.

$$
R_i = \frac{\text{valid\_count}_i}{\max(\text{valid\_count})} - \alpha \cdot \frac{\text{invalid\_count}_i}{\max(\text{invalid\_count})}
R_i = \frac{\text{validCount}_i}{\max(\text{validCount})} - \alpha \cdot \frac{\text{invalidCount}_i}{\max(\text{invalidCount})}
$$

where:

- $\text{valid\_count}_i$ is the valid request count of Node $i$.
- $\text{invalid\_count}_i$ is the potential invalid request count of Node $i$.
- $\text{validCount}_i$ is the valid request count of Node $i$.
- $\text{invalidCount}_i$ is the potential invalid request count of Node $i$.
- $\alpha$ is a constant factor, representing the weight of the invalid request count.

$$
D_i = \beta_1 \cdot \frac{\text{network\_count}_i}{\max(\text{network\_count})} + \beta_2 \cdot \frac{\text{worker\_count}_i}{\max(\text{worker\_count})} + \beta_3 \cdot \frac{\text{activity\_count}_i}{\max(\text{activity\_count})}
D_i = \beta_1 \cdot \frac{\text{networkCount}_i}{\max(\text{networkCount})} + \beta_2 \cdot \frac{\text{workerCount}_i}{\max(\text{workerCount})} + \beta_3 \cdot \frac{\text{activityCount}_i}{\max(\text{activityCount})}
$$

where:

- $\text{network\_count}_i$ is the number of supported networks of Node $i$.
- $\text{worker\_count}_i$ is the worker count of Node $i$.
- $\text{activity\_count}_i$ is the activity count of Node $i$.
- $\text{networkCount}_i$ is the number of supported networks of Node $i$.
- $\text{workerCount}_i$ is the worker count of Node $i$.
- $\text{activityCount}_i$ is the activity count of Node $i$.
- $\beta_1$, $\beta_2$, $\beta_3$ are the weights of the three factors, and $\beta_1 + \beta_2 + \beta_3 = 1$.

$$
E_i = \gamma_1 \cdot \frac{\text{uptime}_i}{\max(\text{uptime})} + \gamma_2 \cdot \text{version\_score}_i
E_i = \gamma_1 \cdot \frac{\text{uptime}_i}{\max(\text{uptime})} + \gamma_2 \cdot \text{versionScore}_i
$$

where:

- $\text{uptime}_i$ is the continuous uptime of Node $i$.
- $\text{version\_score}_i = 1$ if the node uses the latest version, otherwise $0$.
- $\text{versionScore}_i = 1$ if the node uses the latest version, otherwise $0$.
- $\gamma_1$, $\gamma_2$ are the weights of the two factors, and $\gamma_1 + \gamma_2 = 1$.

## Rationale
Expand Down

0 comments on commit 9a50aa1

Please sign in to comment.