forked from Dao-AILab/flash-attention
-
Notifications
You must be signed in to change notification settings - Fork 46
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
527af6c
commit 13ba75a
Showing
3 changed files
with
304 additions
and
313 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
from .flash_attn_triton_kernel_amd import MetaData, attention, get_shape_from_layout, _attn_bwd_preprocess, _attn_bwd | ||
import torch | ||
import triton | ||
|
||
# /////////////////////////////////////////// Interface ////////////////////////////////////////////////////////// | ||
DEBUG=False | ||
|
||
|
||
def fwd(q, | ||
k, | ||
v, | ||
o, | ||
alibi_slopes, | ||
dropout_p, | ||
softmax_scale, | ||
causal, | ||
window_size_left, | ||
window_size_right, | ||
return_softmax, | ||
gen_): | ||
if DEBUG: | ||
print("flash_attn_triton_amd.py::fwd") | ||
print("q:", q.shape) | ||
print("k:", k.shape) | ||
print("v:", v.shape) | ||
print("alibi_slopes:", alibi_slopes) | ||
print("dropout_p:", dropout_p) | ||
print("softmax_scale:", softmax_scale) | ||
print("causal:", causal) | ||
print("window_size_left:", window_size_left) | ||
print("window_size_right:", window_size_right) | ||
print("return_softmax:", return_softmax) | ||
print("gen_:", gen_) | ||
|
||
if dropout_p != 0.0: | ||
raise ValueError("dropout is not supported on HIP") | ||
|
||
|
||
if o is None: | ||
o = torch.empty_like(q) | ||
|
||
|
||
# Create metadata object | ||
metadata = MetaData(sm_scale=softmax_scale) | ||
metadata.max_seqlens_q = q.shape[1] | ||
metadata.max_seqlens_k = k.shape[1] | ||
metadata.layout = "bshd" | ||
|
||
# Setup metadata | ||
if causal: | ||
metadata.need_causal() | ||
# if bias is not None: | ||
# metadata.need_bias(bias, q.shape[0], q.shape[1], q.shape[2], k.shape[2]) | ||
if alibi_slopes is not None: | ||
metadata.need_alibi(alibi_slopes, q.shape[0], q.shape[2]) | ||
if dropout_p > 0.0: | ||
metadata.need_dropout(dropout_p, return_softmax) | ||
|
||
# Check arguments | ||
metadata.check_args(q, k, v, o) | ||
|
||
# Perform the forward attention computation | ||
tri_out, encoded_softmax = attention(q, k, v, o, metadata) | ||
|
||
softmax_lse = encoded_softmax | ||
softmax_p = encoded_softmax | ||
|
||
return tri_out, q , k , v, o, softmax_lse, softmax_p, torch.get_rng_state() | ||
|
||
def varlen_fwd( | ||
q, | ||
k, | ||
v, | ||
o, | ||
cu_seqlens_q, | ||
cu_seqlens_k, | ||
seqused_k, | ||
block_table_, | ||
alibi_slopes,\ | ||
max_seqlen_q, | ||
max_seqlen_k, | ||
dropout_p, | ||
softmax_scale, | ||
zero_tensors, | ||
causal, | ||
window_size_left, | ||
window_size_right, | ||
return_softmax, | ||
gen_): | ||
|
||
if DEBUG: | ||
print("flash_attn_triton_amd.py::varlen_fwd") | ||
print("q:", q.shape) | ||
print("k:", k.shape) | ||
print("v:", v.shape) | ||
|
||
if dropout_p != 0.0: | ||
raise ValueError("dropout is not supported on HIP") | ||
|
||
|
||
|
||
if o is None: | ||
o = torch.empty_like(q) | ||
|
||
|
||
|
||
# create metadata object | ||
input_metadata = MetaData(sm_scale=softmax_scale) | ||
input_metadata.set_varlen_params(cu_seqlens_q, cu_seqlens_k) | ||
|
||
# get shapes | ||
batch, nheads_q, nheads_k, head_size = get_shape_from_layout(q, k, input_metadata) | ||
|
||
# Setup metadata | ||
if causal: | ||
input_metadata.need_causal() | ||
# if bias is not None: | ||
# metadata.need_bias(bias, q.shape[0], q.shape[1], q.shape[2], k.shape[2]) | ||
if alibi_slopes is not None: | ||
input_metadata.need_alibi(alibi_slopes, batch, nheads_q) | ||
if dropout_p > 0.0: | ||
input_metadata.need_dropout(dropout_p, return_softmax) | ||
|
||
# Check arguments | ||
input_metadata.check_args(q, k, v, o) | ||
|
||
# Perform the forward attention computation | ||
tri_out, encoded_softmax = attention(q, k, v, o, input_metadata) | ||
|
||
softmax_lse = encoded_softmax | ||
softmax_p = encoded_softmax | ||
|
||
return tri_out, q , k , v, o, softmax_lse, softmax_p, torch.get_rng_state() | ||
|
||
def fwd_kvcache(*args, **kwargs): | ||
pass | ||
|
||
|
||
def bwd(dout, q, k, v, out, softmax_lse, dq, dk, dv, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, | ||
window_size_right, deterministic, gen_, rng_state): | ||
if DEBUG: | ||
print("flash_attn_triton_amd.py::bwd") | ||
print("q:", q.shape) | ||
print("k:", k.shape) | ||
print("v:", v.shape) | ||
print("softmax_lse:", softmax_lse) | ||
print("dq:", dq.shape) | ||
print("dk:", dk.shape) | ||
print("dv:", dv.shape) | ||
print("alibi_slopes:", alibi_slopes) | ||
print("dropout_p:", dropout_p) | ||
print("softmax_scale:", softmax_scale) | ||
print("causal:", causal) | ||
print("window_size_left:", window_size_left) | ||
print("window_size_right:", window_size_right) | ||
print("deterministic:", deterministic) | ||
print("gen_:", gen_) | ||
print("rng_state:", rng_state) | ||
|
||
|
||
|
||
if out is None: | ||
out = torch.empty_like(q) | ||
|
||
|
||
# Ensure the tensors have requires_grad=True | ||
q.requires_grad_() | ||
k.requires_grad_() | ||
v.requires_grad_() | ||
out.requires_grad_() | ||
|
||
# Create metadata object | ||
metadata = MetaData(sm_scale=softmax_scale) | ||
metadata.max_seqlens_q = q.shape[1] | ||
metadata.max_seqlens_k = k.shape[1] | ||
metadata.layout = "bshd" | ||
|
||
if metadata == 'bshd': | ||
q = q.transpose(1, 2).clone() | ||
k = k.transpose(1, 2).clone() | ||
v = v.transpose(1, 2).clone() | ||
|
||
batch = q.shape[0] | ||
nheads_q = q.shape[1] | ||
BLOCK_DMODEL = q.shape[3] | ||
|
||
# Setup metadata | ||
if causal: | ||
metadata.need_causal() | ||
# if bias is not None: | ||
# metadata.need_bias(bias, q.shape[0], q.shape[1], q.shape[2], k.shape[2]) | ||
|
||
return_softmax = True | ||
if alibi_slopes is not None: | ||
metadata.need_alibi(alibi_slopes, batch, nheads_q) | ||
if dropout_p > 0.0: | ||
metadata.need_dropout(dropout_p, return_softmax) | ||
|
||
# Check arguments | ||
metadata.check_args(q, k, v, out) | ||
|
||
|
||
|
||
# tri_out, _ = attention(q, k, v, out, metadata) | ||
# tri_out.requires_grad_() | ||
# dout.requires_grad_() | ||
# tri_out.backward(dout) | ||
|
||
# write your own version backward | ||
M = torch.empty((batch, nheads_q, metadata.max_seqlens_q), device=q.device, dtype=torch.float32) # this passed from | ||
|
||
if torch.version.hip is not None: | ||
BLOCK = 64 | ||
else: | ||
BLOCK = 128 | ||
o = out | ||
do = dout | ||
sm_scale = softmax_scale | ||
assert do.is_contiguous() | ||
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride() | ||
seqlen_q = q.shape[2] | ||
dq = torch.empty_like(q) | ||
dk = torch.empty_like(k) | ||
dv = torch.empty_like(v) | ||
BATCH, N_CTX, N_HEAD = q.shape[:3] | ||
PRE_BLOCK = 128 | ||
# NUM_WARPS, NUM_STAGES = 4, 1 | ||
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 64, 64, 32 | ||
BLK_SLICE_FACTOR = 2 | ||
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2) | ||
arg_k = k | ||
arg_k = arg_k * (sm_scale * RCP_LN2) | ||
if DEBUG: | ||
print("N_CTX:", N_CTX) | ||
# assert N_CTX % PRE_BLOCK == 0 | ||
|
||
delta = torch.empty_like(M) | ||
_, Lk, _ = q.shape[-1], k.shape[-1], v.shape[-1] | ||
# padded_head = (Lk != ctx.BLOCK_DMODEL) | ||
grid_preprocess = (triton.cdiv(do.shape[2], BLOCK), do.shape[1], do.shape[0]) | ||
_attn_bwd_preprocess[grid_preprocess]( | ||
o, | ||
do, | ||
delta, | ||
o.stride(0), | ||
o.stride(1), | ||
o.stride(2), | ||
o.stride(3), | ||
do.stride(0), | ||
do.stride(1), | ||
do.stride(2), | ||
do.stride(3), | ||
seqlen_q, | ||
head_dim=Lk, | ||
BLOCK_M=BLOCK, | ||
D_HEAD=BLOCK_DMODEL, | ||
) | ||
grid = lambda META: (triton.cdiv(N_CTX, META['BLOCK_N1']), 1, BATCH * N_HEAD) | ||
_attn_bwd[grid]( | ||
q, | ||
arg_k, | ||
v, | ||
sm_scale, | ||
alibi_slopes, | ||
do, | ||
dq, | ||
dk, | ||
dv, | ||
M, | ||
delta, | ||
q.stride(0), | ||
q.stride(1), | ||
q.stride(2), | ||
q.stride(3), | ||
N_HEAD, | ||
N_CTX, | ||
BLOCK_DMODEL= BLOCK_DMODEL, | ||
BLOCK_M1=BLOCK_M1, | ||
BLOCK_N1=BLOCK_N1, | ||
BLOCK_M2=BLOCK_M2, | ||
BLOCK_N2=BLOCK_N2, | ||
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, | ||
USE_ALIBI=False if alibi_slopes is None else True, | ||
) | ||
|
||
return dq, dk, dv, None | ||
|
||
|
||
def varlen_bwd(dout, q, k, v, out, softmax_lse, dq, dk, dv, *args, **kwargs): | ||
pass |
Oops, something went wrong.