r package for dyadic data analysis
An R package for assisting people in dyadic data analysis. Contains
functions to organize output from the gls
and lme
functions from the
nlme
package for cross-sectional data. Some functionality exists with
the lme4
package. Improves user understanding of the Actor-Partner
Independence Model by organizing actor and parter effects for the
purpose of comparing parameters to each other.
# install.packages("devtools")
devtools::install_github("RandiLGarcia/dyadr")
Here is an example of how to use some of the dyadr
functions.
First, load the package and get data:
library(nlme)
library(dyadr)
Using the smallsummary
function
apim <- gls(Satisfaction_A ~ Tension_A + SelfPos_P,
na.action = na.omit,
correlation = corCompSymm(form = ~ 1 | CoupleID),
data = acipair
)
smallsummary(apim)
#> Correlation structure of class corCompSymm representing
#> Rho
#> 0.4715039
#>
#> Residual standard error: 0.4052903
#>
#> Value Std.Error t-value p-value
#> (Intercept) 4.7190 0.2366 19.9475 0.0000
#> Tension_A -0.3454 0.0329 -10.5032 0.0000
#> SelfPos_P -0.0656 0.0516 -1.2716 0.2045
#> 2.5 % 97.5 %
#> (Intercept) 4.2553 5.1827
#> Tension_A -0.4099 -0.2810
#> SelfPos_P -0.1667 0.0355
Using the crsp
function
# Empty Model
apimie <- summary(gls(Satisfaction_A ~ 1,
na.action = na.omit,
correlation = corCompSymm(form = ~ 1 | CoupleID),
data = acipair
))
# sd of errors for the model or esd
esd <- as.numeric(apim[6])
# sd of errors for the empty model or esd0
esd0 <- as.numeric(apimie[6])
# the R squared, using the crsp function
crsp(esd, esd0)
#> [1] 0.3348468
Feel free to submit pull requests resolving documented issues.
- Randi L. Garcia - Initial work - dyadr
- David A. Kenny - Initial work