Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

When Datapoint is generated, stored information is always DDA params, even in DIA module #434

Open
rodvrees opened this issue Nov 7, 2024 · 1 comment
Assignees

Comments

@rodvrees
Copy link
Contributor

rodvrees commented Nov 7, 2024

While DIA-specific params are being parsed from parameter files, generate_datapoint always outputs datapoints with the same set of attributes, which were based on the DDA-parsed params, effectively ignoring a chunk of the other parameters.

def generate_datapoint(
intermediate: pd.DataFrame, input_format: str, user_input: dict, default_cutoff_min_prec: int = 3
) -> pd.Series:
"""Method used to compute metadata for the provided result."""
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d_%H%M%S_%f")
if "comments_for_plotting" not in user_input.keys():
user_input["comments_for_plotting"] = ""
user_input = {key: ("" if value is None else value) for key, value in user_input.items()}
result_datapoint = Datapoint(
id=input_format + "_" + user_input["software_version"] + "_" + formatted_datetime,
software_name=input_format,
software_version=user_input["software_version"],
search_engine=user_input["search_engine"],
search_engine_version=user_input["search_engine_version"],
ident_fdr_psm=user_input["ident_fdr_psm"],
ident_fdr_peptide=user_input["ident_fdr_peptide"],
ident_fdr_protein=user_input["ident_fdr_protein"],
enable_match_between_runs=user_input["enable_match_between_runs"],
precursor_mass_tolerance=user_input["precursor_mass_tolerance"],
fragment_mass_tolerance=user_input["fragment_mass_tolerance"],
enzyme=user_input["enzyme"],
allowed_miscleavages=user_input["allowed_miscleavages"],
min_peptide_length=user_input["min_peptide_length"],
max_peptide_length=user_input["max_peptide_length"],
intermediate_hash=str(hashlib.sha1(intermediate.to_string().encode("utf-8")).hexdigest()),
comments=user_input["comments_for_plotting"],
proteobench_version=proteobench.__version__,
)

@wolski wolski self-assigned this Nov 18, 2024
@rodvrees
Copy link
Contributor Author

rodvrees commented Dec 2, 2024

https://proteobench.readthedocs.io/en/stable/available-modules/4-DIA-Quantification/#input-data-for-private-visualisation-of-your-benchmark-run-s

For example, the parameters shown here are not the same as for DDA but those for DDA are visualized

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants