Skip to content

Commit

Permalink
upgrade to numpy 2.0 and remove imgaug (#13937)
Browse files Browse the repository at this point in the history
* upgrade to numpy 2.0 and remove imgaug

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* add license
  • Loading branch information
GreatV authored Nov 6, 2024
1 parent 9d4a66c commit 15fb82d
Show file tree
Hide file tree
Showing 4 changed files with 338 additions and 38 deletions.
188 changes: 154 additions & 34 deletions ppocr/data/imaug/iaa_augment.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,78 +15,198 @@
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os

# Prevent automatic updates in Albumentations for stability in augmentation behavior
os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1"

import numpy as np
import imgaug
import imgaug.augmenters as iaa
import albumentations as A
from albumentations.core.transforms_interface import DualTransform
from albumentations.augmentations.geometric import functional as fgeometric


# Custom resize transformation mimicking Imgaug's behavior with scaling
class ImgaugLikeResize(DualTransform):
def __init__(
self, scale_range=(0.5, 3.0), interpolation=1, always_apply=False, p=1.0
):
super(ImgaugLikeResize, self).__init__(always_apply, p)
self.scale_range = scale_range
self.interpolation = interpolation

# Resize the image based on a randomly chosen scale within the scale range
def apply(self, img, scale=1.0, **params):
height, width = img.shape[:2]
new_height = int(height * scale)
new_width = int(width * scale)

# For compatibility with Albumentations 1.4.15 and later
# return fgeometric.resize(
# img, (new_height, new_width), interpolation=self.interpolation
# )

return fgeometric.resize(
img, new_height, new_width, interpolation=self.interpolation
)

# Apply the same scaling transformation to keypoints (e.g., polygon points)
def apply_to_keypoints(self, keypoints, scale=1.0, **params):
return np.array(
[(x * scale, y * scale) + tuple(rest) for x, y, *rest in keypoints]
)

# Get random scale parameter within the specified range
def get_params(self):
scale = np.random.uniform(self.scale_range[0], self.scale_range[1])
return {"scale": scale}


# Builder class to translate custom augmenter arguments into Albumentations-compatible format
class AugmenterBuilder(object):
def __init__(self):
pass
# Map common Imgaug transformations to equivalent Albumentations transforms
self.imgaug_to_albu = {
"Fliplr": "HorizontalFlip",
"Flipud": "VerticalFlip",
"Affine": "Affine",
# Additional mappings can be added here if needed
}

# Recursive method to construct augmentation pipeline based on provided arguments
def build(self, args, root=True):
if args is None or len(args) == 0:
return None
elif isinstance(args, list):
# Build the full augmentation sequence if it's a root-level call
if root:
sequence = [self.build(value, root=False) for value in args]
return iaa.Sequential(sequence)
return A.Compose(
sequence,
keypoint_params=A.KeypointParams(
format="xy", remove_invisible=False
),
)
else:
return getattr(iaa, args[0])(
*[self.to_tuple_if_list(a) for a in args[1:]]
# Build individual augmenters for nested arguments
augmenter_type = args[0]
augmenter_args = args[1] if len(args) > 1 else {}
augmenter_args_mapped = self.map_arguments(
augmenter_type, augmenter_args
)
augmenter_type_mapped = self.imgaug_to_albu.get(
augmenter_type, augmenter_type
)
if augmenter_type_mapped == "Resize":
return ImgaugLikeResize(**augmenter_args_mapped)
else:
cls = getattr(A, augmenter_type_mapped)
return cls(
**{
k: self.to_tuple_if_list(v)
for k, v in augmenter_args_mapped.items()
}
)
elif isinstance(args, dict):
cls = getattr(iaa, args["type"])
return cls(**{k: self.to_tuple_if_list(v) for k, v in args["args"].items()})
# Process individual transformation specified as dictionary
augmenter_type = args["type"]
augmenter_args = args.get("args", {})
augmenter_args_mapped = self.map_arguments(augmenter_type, augmenter_args)
augmenter_type_mapped = self.imgaug_to_albu.get(
augmenter_type, augmenter_type
)
if augmenter_type_mapped == "Resize":
return ImgaugLikeResize(**augmenter_args_mapped)
else:
cls = getattr(A, augmenter_type_mapped)
return cls(
**{
k: self.to_tuple_if_list(v)
for k, v in augmenter_args_mapped.items()
}
)
else:
raise RuntimeError("unknown augmenter arg: " + str(args))
raise RuntimeError("Unknown augmenter arg: " + str(args))

# Map arguments to expected format for each augmenter type
def map_arguments(self, augmenter_type, augmenter_args):
augmenter_args = augmenter_args.copy() # Avoid modifying the original arguments
if augmenter_type == "Resize":
# Ensure size is a valid 2-element list or tuple
size = augmenter_args.get("size")
if size:
if not isinstance(size, (list, tuple)) or len(size) != 2:
raise ValueError(
f"'size' must be a list or tuple of two numbers, but got {size}"
)
min_scale, max_scale = size
return {
"scale_range": (min_scale, max_scale),
"interpolation": 1, # Linear interpolation
"p": 1.0,
}
else:
return {"scale_range": (1.0, 1.0), "interpolation": 1, "p": 1.0}
elif augmenter_type == "Affine":
# Map rotation to a tuple and ensure p=1.0 to apply transformation
rotate = augmenter_args.get("rotate", 0)
if isinstance(rotate, list):
rotate = tuple(rotate)
elif isinstance(rotate, (int, float)):
rotate = (float(rotate), float(rotate))
augmenter_args["rotate"] = rotate
augmenter_args["p"] = 1.0
return augmenter_args
else:
# For other augmenters, ensure 'p' probability is specified
p = augmenter_args.get("p", 1.0)
augmenter_args["p"] = p
return augmenter_args

# Convert lists to tuples for Albumentations compatibility
def to_tuple_if_list(self, obj):
if isinstance(obj, list):
return tuple(obj)
return obj


# Wrapper class for image and polygon transformations using Imgaug-style augmentation
class IaaAugment:
def __init__(self, augmenter_args=None, **kwargs):
if augmenter_args is None:
# Default augmenters if none are specified
augmenter_args = [
{"type": "Fliplr", "args": {"p": 0.5}},
{"type": "Affine", "args": {"rotate": [-10, 10]}},
{"type": "Resize", "args": {"size": [0.5, 3]}},
]
self.augmenter = AugmenterBuilder().build(augmenter_args)

# Apply the augmentations to image and polygon data
def __call__(self, data):
image = data["image"]
shape = image.shape

if self.augmenter:
aug = self.augmenter.to_deterministic()
data["image"] = aug.augment_image(image)
data = self.may_augment_annotation(aug, data, shape)
return data
# Flatten polygons to individual keypoints for transformation
keypoints = []
keypoints_lengths = []
for poly in data["polys"]:
keypoints.extend([tuple(point) for point in poly])
keypoints_lengths.append(len(poly))

def may_augment_annotation(self, aug, data, shape):
if aug is None:
return data
# Apply the augmentation pipeline to image and keypoints
transformed = self.augmenter(image=image, keypoints=keypoints)
data["image"] = transformed["image"]

line_polys = []
for poly in data["polys"]:
new_poly = self.may_augment_poly(aug, shape, poly)
line_polys.append(new_poly)
data["polys"] = np.array(line_polys)
return data
# Extract transformed keypoints and reconstruct polygon structures
transformed_keypoints = transformed["keypoints"]

def may_augment_poly(self, aug, img_shape, poly):
keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly]
keypoints = aug.augment_keypoints(
[imgaug.KeypointsOnImage(keypoints, shape=img_shape)]
)[0].keypoints
poly = [(p.x, p.y) for p in keypoints]
return poly
# Reassemble polygons from transformed keypoints
new_polys = []
idx = 0
for length in keypoints_lengths:
new_poly = transformed_keypoints[idx : idx + length]
new_polys.append(np.array([kp[:2] for kp in new_poly]))
idx += length
data["polys"] = new_polys
return data
5 changes: 3 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,11 @@ classifiers = [
dependencies = [
"shapely",
"scikit-image",
"imgaug",
"six",
"pyclipper",
"lmdb",
"tqdm",
"numpy<2.0",
"numpy",
"rapidfuzz",
"opencv-python",
"opencv-contrib-python",
Expand All @@ -58,6 +58,7 @@ dependencies = [
"fire>=0.3.0",
"requests",
"albumentations==1.4.10",
# to be compatible with albumentations
"albucore==0.0.13"
]

Expand Down
4 changes: 2 additions & 2 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
shapely
scikit-image
imgaug
six
pyclipper
lmdb
tqdm
numpy<2.0
numpy
rapidfuzz
opencv-python
opencv-contrib-python
Expand Down
Loading

0 comments on commit 15fb82d

Please sign in to comment.