-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
44 changed files
with
4,745 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
from easydict import EasyDict as edict | ||
import os | ||
import numpy as np | ||
|
||
cfg = edict() | ||
cfg.obj_types = ['Car', 'Pedestrian', 'Cyclist'] | ||
cfg.anchor_prior = False | ||
## trainer | ||
trainer = edict( | ||
gpu = 0, | ||
max_epochs = 200, | ||
disp_iter = 50, | ||
save_iter = 20, | ||
test_iter = 20, | ||
cudnn = True, | ||
training_func = "train_rtm3d", | ||
test_func = "test_mono_detection", | ||
evaluate_func = "evaluate_kitti_obj", | ||
) | ||
|
||
cfg.trainer = trainer | ||
|
||
## path | ||
path = edict() | ||
path.data_path = "/home/kitti_obj/training" | ||
path.test_path = "/home/kitti_obj/testing" | ||
path.visualDet3D_path = "/home/stereo_kitti/visualDet3D" | ||
path.project_path = "/home/stereo_kitti/workdirs" | ||
|
||
if not os.path.isdir(path.project_path): | ||
os.mkdir(path.project_path) | ||
path.project_path = os.path.join(path.project_path, 'RTM3D') | ||
if not os.path.isdir(path.project_path): | ||
os.mkdir(path.project_path) | ||
|
||
path.log_path = os.path.join(path.project_path, "log") | ||
if not os.path.isdir(path.log_path): | ||
os.mkdir(path.log_path) | ||
|
||
path.checkpoint_path = os.path.join(path.project_path, "checkpoint") | ||
if not os.path.isdir(path.checkpoint_path): | ||
os.mkdir(path.checkpoint_path) | ||
|
||
path.preprocessed_path = os.path.join(path.project_path, "output") | ||
if not os.path.isdir(path.preprocessed_path): | ||
os.mkdir(path.preprocessed_path) | ||
|
||
path.train_imdb_path = os.path.join(path.preprocessed_path, "training") | ||
if not os.path.isdir(path.train_imdb_path): | ||
os.mkdir(path.train_imdb_path) | ||
|
||
path.val_imdb_path = os.path.join(path.preprocessed_path, "validation") | ||
if not os.path.isdir(path.val_imdb_path): | ||
os.mkdir(path.val_imdb_path) | ||
|
||
cfg.path = path | ||
|
||
## optimizer | ||
optimizer = edict( | ||
type_name = 'adam', | ||
keywords = edict( | ||
lr = 1.25e-4, | ||
weight_decay = 0, | ||
), | ||
clipped_gradient_norm = 35.0 | ||
) | ||
cfg.optimizer = optimizer | ||
## scheduler | ||
scheduler = edict( | ||
type_name = 'MultiStepLR', | ||
keywords = edict( | ||
milestones = [90, 120] | ||
) | ||
) | ||
cfg.scheduler = scheduler | ||
|
||
## data | ||
data = edict( | ||
batch_size = 32, | ||
num_workers = 4, | ||
rgb_shape = (384, 1280, 3), | ||
train_dataset = "KittiRTM3DDataset", | ||
val_dataset = "KittiMonoDataset", | ||
test_dataset = "KittiMonoTestDataset", | ||
train_split_file = os.path.join(cfg.path.visualDet3D_path, 'data', 'kitti', 'chen_split', 'train.txt'), | ||
val_split_file = os.path.join(cfg.path.visualDet3D_path, 'data', 'kitti', 'chen_split', 'val.txt'), | ||
max_occlusion = 4, | ||
min_z = 3, | ||
) | ||
|
||
data.augmentation = edict( | ||
rgb_mean = np.array([0.485, 0.456, 0.406]), | ||
rgb_std = np.array([0.229, 0.224, 0.225]), | ||
cropSize = (data.rgb_shape[0], data.rgb_shape[1]), | ||
) | ||
data.train_augmentation = [ | ||
edict(type_name='ConvertToFloat'), | ||
edict(type_name='RandomWarpAffine', keywords=edict(output_w=data.augmentation.cropSize[1], output_h=data.augmentation.cropSize[0])), | ||
#edict(type_name='Resize', keywords=edict(size=data.augmentation.cropSize)), | ||
edict(type_name="Shuffle", keywords=edict( | ||
aug_list=[ | ||
edict(type_name="RandomBrightness", keywords=edict(distort_prob=1.0)), | ||
edict(type_name="RandomContrast", keywords=edict(distort_prob=1.0, lower=0.6, upper=1.4)), | ||
edict(type_name="Compose", keywords=edict( | ||
aug_list=[ | ||
edict(type_name="ConvertColor", keywords=edict(transform='HSV')), | ||
edict(type_name="RandomSaturation", keywords=edict(distort_prob=1.0, lower=0.6, upper=1.4)), | ||
edict(type_name="ConvertColor", keywords=edict(current='HSV', transform='RGB')), | ||
] | ||
)) | ||
] | ||
) | ||
), | ||
edict(type_name='RandomEigenvalueNoise', keywords=edict(alphastd=0.1)), | ||
edict(type_name='RandomMirror', keywords=edict(mirror_prob=0.5)), | ||
edict(type_name="FilterObject"), | ||
edict(type_name='Normalize', keywords=edict(mean=data.augmentation.rgb_mean, stds=data.augmentation.rgb_std)) | ||
] | ||
data.test_augmentation = [ | ||
edict(type_name='ConvertToFloat'), | ||
#edict(type_name='CropTop', keywords=edict(crop_top_index=data.augmentation.crop_top)), | ||
edict(type_name='Resize', keywords=edict(size=data.augmentation.cropSize)), | ||
edict(type_name='Normalize', keywords=edict(mean=data.augmentation.rgb_mean, stds=data.augmentation.rgb_std)) | ||
] | ||
cfg.data = data | ||
|
||
## networks | ||
detector = edict() | ||
detector.obj_types = cfg.obj_types | ||
detector.name = 'KM3D' | ||
detector.backbone = edict( | ||
depth=18, | ||
pretrained=True, | ||
frozen_stages=-1, | ||
num_stages=4, | ||
out_indices=(3, ), | ||
norm_eval=False, | ||
dilations=(1, 1, 1, 1), | ||
) | ||
head_loss = edict( | ||
gamma=2.0, | ||
rampup_length = 100, | ||
output_w = data.rgb_shape[1] // 4 | ||
) | ||
head_test = edict( | ||
score_thr=0.3, | ||
) | ||
|
||
head_layer = edict( | ||
input_features=256, | ||
head_features=64, | ||
head_dict={'hm': len(cfg.obj_types), 'wh': 2, 'hps': 18, | ||
'rot': 8, 'dim': 3, 'prob': 1, | ||
'reg': 2, 'hm_hp': 9, 'hp_offset': 2} | ||
) | ||
detector.head = edict( | ||
num_classes = len(cfg.obj_types), | ||
num_joints = 9, | ||
max_objects = 32, | ||
layer_cfg = head_layer, | ||
loss_cfg = head_loss, | ||
test_cfg = head_test | ||
) | ||
detector.loss = head_loss | ||
cfg.detector = detector |
Oops, something went wrong.