Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

i.sam2: SamGeo2 model #1244

Open
wants to merge 14 commits into
base: grass8
Choose a base branch
from
7 changes: 7 additions & 0 deletions src/imagery/i.sam2/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
MODULE_TOPDIR = ../..

PGM = i.sam2

include $(MODULE_TOPDIR)/include/Make/Script.make

default: script
50 changes: 50 additions & 0 deletions src/imagery/i.sam2/i.sam2.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
<h2>DESCRIPTION</h2>

<em>i.sam2</em> allows users to segment orthoimagery based on text prompts using <a href="https://samgeo.gishub.org/">SamGeo</a>.

<h2>REQUIREMENTS</h2>

<ul>
<li><a href="https://pillow.readthedocs.io/en/stable/">Pillow>=10.2.0</a></li>
<li><a href="https://numpy.org/">numpy>=1.26.1</a></li>
<li><a href="https://pytorch.org/">torch>=2.5.1</a></li>
<li><a href="https://samgeo.gishub.org/">segment-geospatial>=0.12.3</a></li>
</ul>

<div class="code">
<pre>
pip install pillow numpy torch segment-geospatial
</pre>
</div>

<h2>EXAMPLES</h2>

Segment orthoimagery using SamGeo2:

<div class="code">
<pre>
i.sam2 group=rgb_255 output=tree_mask text_prompt="trees"
</pre>
</div>

<img src="./i_sam2_trees.jpg" height="600" alt="i.sam2 example" />

<h2>NOTES</h2>
The first time use will be longer as the model needs to be downloaded. Subsequent runs will be faster.
Additionally, Cuda is required for GPU acceleration. If you do not have a GPU, you can use the CPU by setting the environment variable `CUDA_VISIBLE_DEVICES` to `-1`.

<h2>REFERENCES</h2>
<ul>
<li>Wu, Q., & Osco, L. (2023). samgeo: A Python package for segmenting geospatial data with the Segment Anything Model (SAM). Journal of Open Source Software, 8(89), 5663. <a href="https://doi.org/10.21105/joss.05663">https://doi.org/10.21105/joss.05663</a></li>
<li>Osco, L. P., Wu, Q., de Lemos, E. L., Gonçalves, W. N., Ramos, A. P. M., Li, J., & Junior, J. M. (2023). The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot. International Journal of Applied Earth Observation and Geoinformation, 124, 103540. <a href="https://doi.org/10.1016/j.jag.2023.103540">https://doi.org/10.1016/j.jag.2023.103540</a></li>
</ul>

<h2>SEE ALSO</h2>
<em>
<a href="i.segment.gsoc.html">i.segment.gsoc</a> for region growing and merging segmentation,
<a href="i.segment.hierarchical">i.segment.hierarchical</a> performs a hierarchical segmentation,
<a href="i.superpixels.slic">i.superpixels.slic</a> for superpixel segmentation.
</em>

<h2>AUTHOR</h2>
Corey T. White (NCSU GeoForAll Lab & OpenPlains Inc.)
190 changes: 190 additions & 0 deletions src/imagery/i.sam2/i.sam2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
#!/usr/bin/env python3

############################################################################
#
# MODULE: i.sam2
# AUTHOR: Corey T. White, OpenPlains Inc.
# PURPOSE: Uses the SAMGeo model for segmentation in GRASS GIS.
# COPYRIGHT: (C) 2023-2024 Corey White
# This program is free software under the GNU General
# Public License (>=v2). Read the file COPYING that
# comes with GRASS for details.
#
#############################################################################

# %module
# % description: Integrates SAMGeo model with text prompt for segmentation in GRASS GIS.
# % keyword: imagery
# % keyword: segmentation
# % keyword: object recognition
# % keyword: deep learning
# %end

# %option G_OPT_I_GROUP
# % key: group
# % description: Name of input imagery group
# % required: yes
# %end

# %option
# % key: output
# % type: string
# % description: Name of output segmented raster map
# % gisprompt: new,cell,raster
# % required: yes
# %end

# %option
# % key: model_path
# % type: string
# % description: Path to the SAMGeo model file (optional if using default model)
# % required: no
# %end

# %option
# % key: text_prompt
# % type: string
# % description: Text prompt to guide segmentation
# % required: yes
# %end

# %option
# % key: text_threshold
# % type: double
# % answer: 0.24
# % description: Text threshold for text segmentation
# % required: no
# % multiple: no
# %end

# %option
# % key: box_threshold
# % type: double
# % answer: 0.24
# % description: Box threshold for text segmentation
# % required: no
# % multiple: no
# %end


import os
import sys
import grass.script as gs
import torch
import numpy as np
from PIL import Image
from grass.script import array as garray


def main():
from samgeo import SamGeo
from samgeo.text_sam import LangSAM

group = options["group"]

output_raster = options["output"]
model_path = options.get("model_path")
text_prompt = options.get("text_prompt")
text_threshold = float(options.get("text_threshold"))
box_threshold = float(options.get("box_threshold"))

# Set default model path if not provided
default_model_path = os.path.join(
gs.gisenv()["GISDBASE"], "samgeo_default_model.pth"
)
if not model_path:
model_path = default_model_path

# Set up paths to access the raster files
tmp_dir = gs.tempdir()
temp_input_path = os.path.join(tmp_dir, "input.tif")

temp_output_path = tmp_dir
guide_input_path = None

rasters = gs.read_command("i.group", group=group, flags="lg")
raster_list = [raster.strip() for raster in rasters.splitlines()]
input_image_np = list(
[garray.array(raster, dtype=np.uint8) for raster in raster_list]
)

rgb_array = np.stack(input_image_np, axis=-1)

if rgb_array.dtype != np.uint8:
rgb_array = (
(rgb_array - rgb_array.min()) / (rgb_array.max() - rgb_array.min()) * 255
)
rgb_array = rgb_array.astype(np.uint8)

np_image = Image.fromarray(rgb_array[:, :, :3])

# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.cuda.empty_cache()

try:
if text_prompt:
gs.message("Running LangSAM segmentation...")
sam = LangSAM(
model_type="sam2-hiera-large",
)
from torch.amp.autocast_mode import autocast

with autocast(device_type=device):
masks, boxes, phrases, logits = sam.predict(
image=np_image,
text_prompt=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
return_results=True,
)
else:
gs.message("Running SAMGeo segmentation...")
sam = SamGeo(model_type="vit_h", model_path=model_path, device=device)
sam.generate(
input_image=temp_input_path,
output=temp_output_path,
guide=guide_input_path,
)
except Exception as e:
gs.message(torch.cuda.memory_summary())
gs.fatal(f"Error while running SAMGeo: {e}")
return 1

gs.message("Segmentation complete.")

write_raster(masks, output_raster)
return 0


def write_raster(input_np_array, output_raster):
gs.message("Importing the segmented raster into GRASS GIS...")

if len(input_np_array) == 0:
gs.fatal("No masks found.")

# Initialize the merged raster with zeros
merged_raster = np.zeros_like(input_np_array[0], dtype=np.int32)

for idx, band in enumerate(input_np_array):
if band.shape != input_np_array[0].shape:
gs.fatal("All masks must have the same shape.")

unique_value = idx + 1 # Start unique values from 1

# Use NumPy's vectorized operations to assign unique values
mask = band != 0 # Create a mask where band is not zero
merged_raster[mask] = unique_value

# Convert the merged raster to a GRASS array
mask_raster = garray.array()
mask_raster[...] = merged_raster

# Write the merged raster to the output file
mask_raster.write(mapname=output_raster)


if __name__ == "__main__":
options, flags = gs.parser()
sys.exit(main())
Binary file added src/imagery/i.sam2/i_sam2_trees.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 4 additions & 0 deletions src/imagery/i.sam2/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
Pillow>=10.2.0
numpy>=1.26.1
torch>=2.5.1
segment-geospatial>=0.12.3
Empty file.
Loading