Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Change how data is downloaded for Bitcoin tutorial #391

Merged
merged 4 commits into from
Jun 11, 2024

Conversation

MMenchero
Copy link
Contributor

Description

This PR changes how the dataset for the Bitcoin Price Prediction tutorial of the documentation is downloaded.

Before: Used the cryptocmd library
Now: Downloads the data from Nixtla/transfer-learning-time-series. .

This change should prevent errors with the nixtla CI that were caused by an issue with the cryptocmd library.

Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@MMenchero MMenchero requested review from AzulGarza and jmoralez and removed request for AzulGarza June 11, 2024 20:56
Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 1.4237 3.966 0.0084 0.0043

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 1.5521 2.8969 0.0052 0.0045

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.121 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121588 219457 213677 4.68961e+06
total_time 1.4786 1.7933 0.0072 0.0062

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 346.984 398.956 1119.26
mape 0.062 0.0437 0.0512 0.1583
mse 835120 403787 656723 3.17316e+06
total_time 3.415 1.7688 0.0067 0.0067

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 459.769 602.926 1340.95
mape 0.0697 0.0566 0.0787 0.17
mse 1.22721e+06 739135 1.61572e+06 6.04619e+06
total_time 3.9218 1.4873 0.0068 0.0064

Plot:

@jmoralez
Copy link
Member

Can you please also remove it from here?

- cryptocmd

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 1.8573 1.794 0.0085 0.0043

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 1.5753 1.7273 0.0051 0.0044

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.121 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121588 219457 213677 4.68961e+06
total_time 2.6807 14.2987 0.0075 0.0065

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 346.984 398.956 1119.26
mape 0.062 0.0437 0.0512 0.1583
mse 835120 403787 656723 3.17316e+06
total_time 18.6995 6.8574 0.007 0.0066

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 459.769 602.926 1340.95
mape 0.0697 0.0566 0.0787 0.17
mse 1.22721e+06 739135 1.61572e+06 6.04619e+06
total_time 9.2721 6.0367 0.0072 0.0067

Plot:

@jmoralez
Copy link
Member

To fix the failing tests you can add setuptools<70 to the dev dependencies here

dev = [

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 1.4488 1.6183 0.0082 0.0043

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 1.1305 1.2665 0.005 0.0043

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.121 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121588 219457 213677 4.68961e+06
total_time 1.4361 1.4828 0.0071 0.0061

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 346.984 398.956 1119.26
mape 0.062 0.0437 0.0512 0.1583
mse 835120 403787 656723 3.17316e+06
total_time 2.1753 1.4541 0.0068 0.0064

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 459.769 602.926 1340.95
mape 0.0697 0.0566 0.0787 0.17
mse 1.22721e+06 739135 1.61572e+06 6.04619e+06
total_time 3.0943 2.0416 0.0069 0.0064

Plot:

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 1.6934 1.473 0.0086 0.0044

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 2.5801 1.4574 0.0052 0.0044

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.121 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121588 219457 213677 4.68961e+06
total_time 1.5755 1.8405 0.0074 0.0064

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 346.984 398.956 1119.26
mape 0.062 0.0437 0.0512 0.1583
mse 835120 403787 656723 3.17316e+06
total_time 2.3906 2.1212 0.0071 0.0065

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 459.769 602.926 1340.95
mape 0.0697 0.0566 0.0787 0.17
mse 1.22721e+06 739135 1.61572e+06 6.04619e+06
total_time 3.8429 2.837 0.0069 0.0089

Plot:

@MMenchero MMenchero merged commit 294405d into main Jun 11, 2024
14 checks passed
@MMenchero MMenchero deleted the fix/bitcoin-tutorial branch June 11, 2024 23:37
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants