-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cfc8d71
commit e7d9011
Showing
4 changed files
with
330 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
classdef BDFk_EXTk | ||
properties | ||
u | ||
alphas | ||
betas | ||
dt | ||
T_final | ||
nsteps | ||
iostep | ||
ito | ||
ext | ||
hfac | ||
rhs | ||
end | ||
methods | ||
% Constructor | ||
function obj = BDFk_EXTk(nsteps, dt, iostep, nb) | ||
obj.alphas = zeros(3,3); % initialize vectors to hold EXTk coefficients | ||
obj.betas = zeros(4,3); % initialize vectors to hold BDFk coefficients | ||
obj.ext = zeros(nb,3); % initialize vectors to hold extrapolation vectors | ||
obj.u = zeros(nb+1, 3); % initialize vectors to hold ROM coefficients | ||
obj.hfac = []; | ||
obj.dt = dt; % Simultaion time step size | ||
obj.nsteps = nsteps; % Simulation total time steps | ||
obj.iostep = iostep; % Every #steps to store ROM quantities | ||
obj.T_final = obj.nsteps*obj.dt; % Simulation final time | ||
end | ||
function obj = setup(obj) | ||
% Setup BDFk/EXTk coefficients | ||
|
||
% Setup EXT1 coefficients | ||
obj.alphas(1,1) = 1.0; | ||
|
||
% Setup EXT2 coefficients | ||
obj.alphas(1,2) = 2.0; | ||
obj.alphas(2,2) = -1.0; | ||
|
||
% Setup EXT3 coefficients | ||
obj.alphas(1,3) = 3.0; | ||
obj.alphas(2,3) = -3.0; | ||
obj.alphas(3,3) = 1.0; | ||
|
||
% BDF1 coefficients | ||
obj.betas(1,1) = 1.0; | ||
obj.betas(2,1) = -1.0; | ||
|
||
% BDF2 coefficients | ||
obj.betas(1,2) = 1.5; | ||
obj.betas(2,2) = -2.0; | ||
obj.betas(3,2) = 0.5; | ||
|
||
% BDF3 coefficients | ||
obj.betas(1,3) = 11.0/6; | ||
obj.betas(2,3) = -3.0; | ||
obj.betas(3,3) = 1.5; | ||
obj.betas(4,3) = -1.0/3; | ||
end | ||
|
||
function obj = setrhs(obj, rom, u) | ||
|
||
obj.ext(:,3) = obj.ext(:,2); | ||
obj.ext(:,2) = obj.ext(:,1); | ||
obj.ext(:,1) = rom.setrhs(u, "semi-implicit"); | ||
|
||
obj.rhs = obj.ext*obj.alphas(:,obj.ito); | ||
% Later move rom.bu into rom.setrhs (need inverse though) | ||
obj.rhs = obj.rhs - rom.bu*(u(2:end,:)*obj.betas(2:end,obj.ito))/obj.dt; | ||
end | ||
|
||
function [next] = advance(obj, rom) | ||
if isempty(obj.hfac) | ||
h=rom.bu*obj.betas(1,obj.ito)/obj.dt+rom.mu*rom.au; | ||
obj.hfac=chol(h); | ||
end | ||
next = [1,(obj.hfac\(obj.hfac'\obj.rhs))']; | ||
if obj.ito <= 2 | ||
obj.hfac = []; | ||
end | ||
end | ||
|
||
end | ||
|
||
methods (Static) | ||
function a = shift(a,b,n) | ||
for i=n:-1:2 | ||
a(:,i)=a(:,i-1); | ||
end | ||
a(:,1)=b; | ||
end | ||
|
||
function rom = collect_statistics(rom, u_new) | ||
rom.ua = rom.ua + u_new'; | ||
rom.u2a = rom.u2a + u_new'*u_new; | ||
end | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
%##################################### | ||
% | ||
%# GROM class inherits from NekROM | ||
%# v0.0.0 | ||
% | ||
%# Ping-Hsuan Tsai | ||
%# 2024-07-04 | ||
% | ||
%##################################### | ||
|
||
classdef grom < nekrom | ||
% Class for GROM (Galerkin Based Reduced Order Model) | ||
properties | ||
ua | ||
u2a | ||
mu | ||
Re | ||
end | ||
|
||
methods | ||
% Constructor | ||
function obj = grom(path) | ||
% Call the constructor of the superclass (NekROM) | ||
obj@nekrom(path); | ||
end | ||
|
||
function classname = str(obj) | ||
classname = upper(class(obj)); | ||
end | ||
|
||
function obj = get_N_dim_ops(obj, nb) | ||
% Get N dimensional operators and vectors | ||
% : nb: number of modes | ||
% : returns obj: NekROM object with N dimensional operators and vectors | ||
obj = get_N_dim_ops@nekrom(obj, nb); | ||
end | ||
|
||
|
||
function obj = initialize_vars(obj, Re) | ||
% Initialize other properties as needed | ||
% : returns obj: NeROM object with initialized variables | ||
obj.ua = zeros(obj.nb+1, 1); % initialize ROM averaged velocity coefficients | ||
obj.u2a = zeros(obj.nb+1, obj.nb+1); % initialize ROM averaged velocity squared coefficients | ||
obj.Re = Re; | ||
obj.mu = 1./obj.Re; | ||
end | ||
|
||
function [rhs] = setrhs(obj, u, method) | ||
% Set right hand side of the G-ROM | ||
% : u: ROM velocity coefficients | ||
% : returns rhs: right hand side of the G-ROM | ||
if method == "semi-implicit" | ||
rhs = -reshape(obj.cu*u(:,1),obj.nb,obj.nb+1)*u(:,1); % nonlinear term | ||
rhs = rhs-obj.mu*obj.au0(2:end,1); % viscous term of the zeroth mode | ||
end | ||
end | ||
|
||
function dump_rom_statistics(rom, nsteps) | ||
ua = rom.ua/(nsteps); | ||
u2a = rom.u2a/(nsteps); | ||
|
||
fileID = fopen("./ua_nsteps"+nsteps+"N_"+rom.nb,'w'); | ||
fprintf(fileID,"%24.15e\n",ua); | ||
fclose(fileID); | ||
|
||
fileID = fopen("./u2a_nsteps"+nsteps+"N_"+rom.nb,'w'); | ||
fprintf(fileID,"%24.15e\n",u2a); | ||
fclose(fileID); | ||
end | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
%##################################### | ||
% | ||
%# Projection Based ROM driver in Matlab for NekROM | ||
%# v0.0.0 | ||
% | ||
%# Currently only support Galerkin ROM | ||
% | ||
%# Ping-Hsuan Tsai | ||
%# 2024-07-04 | ||
% | ||
%##################################### | ||
|
||
clear all; close all; | ||
|
||
% Parameters users need to specify | ||
Re = 204; % Reynolds number | ||
nb = 20; % number of modes | ||
dt = 0.001; % Simultaion time step size | ||
nsteps = 20000; % Simulation total time steps | ||
iostep = 10; % Every #steps to store ROM quantities | ||
|
||
rom = grom('../ops/'); % Create an instance of the grom class and load NekROM operators | ||
|
||
rom = rom.get_N_dim_ops(nb); % Extract nb-dimensional operators and vectors | ||
rom = rom.initialize_vars(Re); % Initialize variables | ||
|
||
timestepper = BDFk_EXTk(nsteps, dt, iostep, nb); | ||
timestepper = timestepper.setup(); | ||
|
||
ucoef = zeros(rom.nb+1, (timestepper.nsteps/timestepper.iostep)); | ||
% Solving ROM using BDFk/EXTk time stepping scheme | ||
timestepper.u(:, 1) = rom.u0; | ||
for istep=1:timestepper.nsteps | ||
timestepper.ito=min(istep, 3); | ||
|
||
timestepper = timestepper.setrhs(rom, timestepper.u); % Compute the RHS in BDFk/EXTk scheme | ||
[u_new] = timestepper.advance(rom); % Solve for solution at the next time step | ||
timestepper.u = timestepper.shift(timestepper.u, u_new, 3); | ||
|
||
rom = timestepper.collect_statistics(rom, u_new); % Compute mean coefficient and mean squared coefficient | ||
|
||
if (mod(istep, timestepper.iostep) == 0) | ||
ucoef(:, istep/timestepper.iostep) = timestepper.u(:, 1); | ||
end | ||
|
||
end | ||
|
||
% Plot the first five modes behavior in time | ||
|
||
% Setup time stamp for ROM | ||
% TODO: Make it cleaner | ||
t_rom = linspace(timestepper.dt, timestepper.T_final, timestepper.nsteps/timestepper.iostep); | ||
for i=2:min(rom.nb+1, 6) | ||
figure(1) | ||
plot(t_rom, ucoef(i, :), 'r'); hold on | ||
legend(rom.str(), 'FontSize', 14); | ||
xlabel('$t$', 'Interpreter', 'latex', 'FontSize', 14); | ||
ylabel(['$u_', num2str(i), '$'], 'Interpreter', 'latex', 'FontSize', 14); | ||
title(['Mode ', num2str(i), ' behavior of ', num2str(rom.nb), '-dimensional ', rom.str()], 'Interpreter', 'latex', 'FontSize', 14); | ||
saveas(gcf, sprintf('u%d.png', i)) | ||
close(1) | ||
end | ||
|
||
dump_rom_statistics(rom, timestepper.nsteps); | ||
|
||
figure(1) | ||
plot(rom.uas(1:rom.nb+1), 'k-o'); hold on | ||
plot(rom.ua/timestepper.nsteps, 'r-x'); hold off | ||
legend(rom.str(), 'FOM', 'FontSize', 14); | ||
xlabel('Mode $i$', 'Interpreter', 'latex', 'FontSize', 14); | ||
ylabel('$u_i$', 'Interpreter', 'latex', 'FontSize', 14); | ||
title(['Averaged coefficients', ' of ', num2str(rom.nb), '-dimensional ', rom.str()], 'Interpreter', 'latex', 'FontSize', 14); | ||
saveas(gcf, sprintf('ua_compare_N%d.png', rom.nb)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
%##################################### | ||
% | ||
%# NekROM class | ||
%# v0.0.0 | ||
% | ||
%# Ping-Hsuan Tsai | ||
%# 2024-07-04 | ||
% | ||
%##################################### | ||
|
||
classdef nekrom | ||
% Class for NekROM | ||
properties | ||
mb % Total number of modes generated by NekROM | ||
ns % Number of snapshots | ||
aufull % Stiffness matrix of size (mb+1 x mb+1) | ||
bufull % Mass matrix of size (mb+1 x mb+1) | ||
cufull % Advection tensor of size (mb x mb+1 x mb+1) | ||
u0full % Initial condition of size (mb+1) | ||
ukfull % Snapshot projection matrix of size (mb+1 x ns) | ||
uas % Averaged velocity coefficients of the snapshots (mb+1) | ||
nb % Number of modes | ||
au0 % Stiffness matrix of size (nb+1 x nb+1) | ||
bu0 % Mass matrix of size (nb+1 x nb+1) | ||
cu % Advection tensor of size (nb*(nb+1) x nb+1) | ||
u0 % Initial condition of size (nb+1) | ||
au % Stiffness matrix of size (nb x nb) | ||
bu % Mass matrix of size (nb x nb) | ||
uk % Snapshot projection matrix of size (nb+1 x ns) | ||
ukmin % Minimum value of uk for each row | ||
ukmax % Maximum value of uk for each row | ||
end | ||
|
||
methods | ||
% Constructor | ||
function obj = nekrom(path) | ||
if nargin == 0 | ||
disp('Path is required'); | ||
return; | ||
end | ||
obj = obj.load_nekrom_ops(path); | ||
end | ||
|
||
function obj = load_nekrom_ops(obj, path) | ||
% Load NekROM operators and vectors | ||
% : path: path to the NekROM operators and vectors | ||
% : returns obj: NekROM object with operators and vectors loaded | ||
|
||
fprintf('Loading NekROM operators and vectors under path: %s\n', path); | ||
% Load total number of modes generated by NekROM | ||
obj.mb = dlmread(fullfile(path + "nb")); | ||
tt = dlmread(path + "au"); | ||
obj.aufull = reshape(dlmread(path + "au"), obj.mb+1, obj.mb+1); % Load stiffness matrix | ||
obj.bufull = reshape(dlmread(path + "bu"), obj.mb+1, obj.mb+1); % Load mass matrix | ||
obj.cufull = reshape(dlmread(path + "cu"), obj.mb, obj.mb+1, obj.mb+1); % Load advection tensor | ||
obj.u0full = dlmread(path + "u0"); % Load initial condition | ||
obj.ukfull = reshape(dlmread(path + "uk"), obj.mb+1, []); | ||
obj.ns = dlmread(path + "ns"); % load number of snapshots | ||
obj.uas = dlmread(path + "uas"); % load averaged velocity coefficients of the snapshots | ||
if size(obj.ukfull, 2) ~= obj.ns | ||
error('Number of columns in obj.ukfull is not equal to ns.'); | ||
end | ||
fprintf("Done loading NekROM operators ... \n"); | ||
end | ||
|
||
function obj = get_N_dim_ops(obj, nb) | ||
% Get N dimensional operators and vectors | ||
% : nb: number of modes | ||
% : returns obj: NekROM object with N dimensional operators and vectors | ||
|
||
fprintf('Get N dimensional operators and vectors\n'); | ||
|
||
obj.nb = nb; | ||
index = 1:obj.nb+1; % index including zeroth mode | ||
index1 = 1:obj.nb; % index for the first dimension of the advection operator | ||
|
||
obj.au0 = obj.aufull(index, index); % get stiffness matrix of size (nb+1 x nb+1) | ||
obj.bu0 = obj.bufull(index, index); % get mass matrix of size (nb+1 x nb+1) | ||
obj.au = obj.au0(2:end, 2:end); % get stiffness matrix of size (nb x nb) | ||
obj.bu = obj.bu0(2:end, 2:end); % get mass matrix of size (nb x nb) | ||
obj.cu = obj.cufull(index1, index, index); % get advection tensor of size (nb x (nb+1) x nb+1) | ||
obj.cu = reshape(obj.cu, obj.nb*(obj.nb+1), obj.nb+1); % reshape advection tensor to size (nb*(nb+1) x nb+1) | ||
obj.u0 = obj.u0full(index); % get initial condition of size (nb+1) | ||
obj.uk = obj.ukfull(index, 1:obj.ns); % get snapshot projection matrix of size (nb+1 x ns) | ||
obj.ukmin = min(obj.uk, [], 2); % get minimum value of uk for each row | ||
obj.ukmax = max(obj.uk, [], 2); % get maximum value of uk for each row | ||
end | ||
|
||
end | ||
end |