Welcome to the NanoNets API! You can use our API to build custom deep learning models for images.
We have language bindings in Shell, Ruby, Golang, Java, C# and Python! You can view code examples in the dark area to the right, and you can switch the programming language for the examples with the tabs in the top right.
In the documentation, you will find ready to fire code samples in these languages as well as detailed API specs for different endpoints.
# Model Object A model Object has 3 attributes
### model_id Definition: Unique Id for the model
### model_type Definition: Type of model. Possible values are:
classification | Image classification model |
localization | Object detection model |
multilabelclassification | Multi label image classification model |
ocr | OCR model |
### state Definition:Current state of model. Possible values are::
-1 | Error in model training |
0 | Model created. No training data uploaded yet |
1 | Training data uploaded. Need to annotate data |
2 | Training data annotated. Need to start training |
3 | Model in training queue |
4 | Model currently training |
5 | Model hosted. Can be used for prediction |
This Python package is automatically generated by the Swagger Codegen project:
- API version: 2.0.0
- Package version: 1.0.0
- Build package: io.swagger.codegen.v3.generators.python.PythonClientCodegen For more information, please visit https://nanonets.com
Python 2.7 and 3.4+
If the python package is hosted on Github, you can install directly from Github
pip install git+https://github.com/GIT_USER_ID/GIT_REPO_ID.git
(you may need to run pip
with root permission: sudo pip install git+https://github.com/GIT_USER_ID/GIT_REPO_ID.git
)
Then import the package:
import nanonets
Install via Setuptools.
python setup.py install --user
(or sudo python setup.py install
to install the package for all users)
Then import the package:
import nanonets
Please follow the installation procedure and then run the following:
from __future__ import print_function
import time
import nanonets
from nanonets.rest import ApiException
from pprint import pprint
# Configure HTTP basic authorization: ApiKey
configuration = nanonets.Configuration()
configuration.username = 'YOUR_USERNAME'
configuration.password = 'YOUR_PASSWORD'
# create an instance of the API class
api_instance = nanonets.ImagePredictApi(nanonets.ApiClient(configuration))
model_id = 'model_id_example' # str |
file = 'file_example' # file |
try:
# Prediction for image File
api_instance.image_categorization_label_file_post(model_id, file)
except ApiException as e:
print("Exception when calling ImagePredictApi->image_categorization_label_file_post: %s\n" % e)
# Configure HTTP basic authorization: ApiKey
configuration = nanonets.Configuration()
configuration.username = 'YOUR_USERNAME'
configuration.password = 'YOUR_PASSWORD'
# create an instance of the API class
api_instance = nanonets.ImagePredictApi(nanonets.ApiClient(configuration))
model_id = 'model_id_example' # str |
urls = 'urls_example' # str |
try:
# Prediction for image URLs
api_instance.image_categorization_label_urls_post2(model_id, urls)
except ApiException as e:
print("Exception when calling ImagePredictApi->image_categorization_label_urls_post2: %s\n" % e)
All URIs are relative to https://app.nanonet.com/api/v2
Class | Method | HTTP request | Description |
---|---|---|---|
ImagePredictApi | image_categorization_label_file_post | POST /ImageCategorization/LabelFile/ | Prediction for image File |
ImagePredictApi | image_categorization_label_urls_post2 | POST /ImageCategorization/LabelUrls/ | Prediction for image URLs |
ImageTrainApi | image_categorization_train_post | POST /ImageCategorization/Train/ | Train Model |
ImageUploadApi | image_categorization_upload_file_post | POST /ImageCategorization/UploadFile/ | Upload training images by File |
ImageUploadApi | image_categorization_upload_urls_post | POST /ImageCategorization/UploadUrls/ | Upload training images by Url |
ImageModelApi | image_categorization_model_get | GET /ImageCategorization/Model | Get Model by Id |
ImageModelApi | image_categorization_model_post | POST /ImageCategorization/Model/ | Create New Model |
ImageModelApi | image_categorization_models_get | GET /ImageCategorization/Models/ | Get All Models |
MultiLabelClassificationModelApi | multi_label_classification_by_model_id_get | GET /MultiLabelClassification/Model/{model_id} | Get Model by Id |
MultiLabelClassificationModelApi | multi_label_image_classification_post | POST /MultiLabelClassification/Model/ | Create New Model |
MultiLabelClassificationPredictApi | multi_label_classification_label_files_post | POST /MultiLabelClassification/Model/{model_id}/LabelFiles/ | Prediction for image File |
MultiLabelClassificationPredictApi | multi_label_classification_post | POST /MultiLabelClassification/Model/{model_id}/LabelUrls/ | Prediction for image URLs |
MultiLabelClassificationTrainApi | multi_label_classification_model_train_by_model_id_post | POST /MultiLabelClassification/Model/{model_id}/Train/ | Train Model |
MultiLabelClassificationUploadApi | multi_label_classification_upload_files_post | POST /MultiLabelClassification/Model/{model_id}/UploadFiles/ | Upload training images by File |
MultiLabelClassificationUploadApi | multi_label_classification_upload_urls_post | POST /MultiLabelClassification/Model/{model_id}/UploadUrls/ | Upload training images by Urls |
OCRModelApi | o_cr_model_by_model_id_get | GET /OCR/Model/{model_id} | Get Model by Id |
OCRModelApi | o_cr_model_post | POST /OCR/Model/ | Create New Model |
OCRPredictApi | o_cr_model_label_file_by_model_id_post | POST /OCR/Model/{model_id}/LabelFile/ | Prediction for image file |
OCRPredictApi | o_cr_model_label_urls_by_model_id_post | POST /OCR/Model/{model_id}/LabelUrls/ | Prediction for image url |
OCRTrainApi | o_cr_model_train_by_model_id_post | POST /OCR/Model/{model_id}/Train/ | Train Model |
OCRUploadApi | o_cr_model_upload_file_by_model_id_post | POST /OCR/Model/{model_id}/UploadFile/ | Upload training images by File |
OCRUploadApi | o_cr_model_upload_urls_by_model_id_post | POST /OCR/Model/{model_id}/UploadUrls/ | Upload training images by Url |
ObjectModelApi | object_detection_model_by_model_id_get | GET /ObjectDetection/Model/{model_id} | Get Model by Id |
ObjectModelApi | object_detection_model_post | POST /ObjectDetection/Model/ | Create New Model |
ObjectModelApi | object_detection_models_get | GET /OCR/Model/ | Get All Models |
ObjectModelApi | object_detection_models_get_0 | GET /ObjectDetection/Models/ | Get All Models |
ObjectPredictApi | object_detection_model_label_file_by_model_id_post | POST /ObjectDetection/Model/{model_id}/LabelFile/ | Prediction for image file |
ObjectPredictApi | object_detection_model_label_urls_by_model_id_post | POST /ObjectDetection/Model/{model_id}/LabelUrls/ | Prediction for image url |
ObjectTrainApi | object_detection_model_train_by_model_id_post | POST /ObjectDetection/Model/{model_id}/Train/ | Train Model |
ObjectUploadApi | object_detection_model_upload_file_by_model_id_post | POST /ObjectDetection/Model/{model_id}/UploadFile/ | Upload training images by File |
ObjectUploadApi | object_detection_model_upload_urls_by_model_id_post | POST /ObjectDetection/Model/{model_id}/UploadUrls/ | Upload training images by Url |
- Type: HTTP basic authentication