Project Page | Paper | Slides | Poster
Understanding The Robustness in Vision Transformers.
Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Anima Anandkumar, Jiashi Feng and Jose M. Alvarez.
International Conference on Machine Learning, 2022.
This repository contains the official Pytorch implementation of the training/evaluation code and the pretrained models of Fully Attentional Network (FAN).
FAN is a family of general-purpose Vision Transformer backbones that are highly robust to unseen natural corruptions in various visual recognition tasks.
- ImageNet-22K Fine-tuning Code Release
- Cityscape-C and COCO-C Dataset Release
- Pre-trained Model Release
- Cityscape-C and COCO-C Dataset Generation Script
- Downstream Transfer (Detection, Segmentation) Code Release
- ImageNet-1K Training & Fine-tuning Code Release
- Init Repo
The repo is built based on timm library, which can be installed via: pip3 install timm==0.5.4 pip3 install torchvision==0.9.0
Download ImageNet clean dataset and ImageNet-C dataset and structure the datasets as follows:
/path/to/imagenet-C/
clean/
class1/
img3.jpeg
class2/
img4.jpeg
corruption1/
severity1/
class1/
img3.jpeg
class2/
img4.jpeg
severity2/
class1/
img3.jpeg
class2/
img4.jpeg
For other out-of-distribution shift benchmarks, we use ImageNet-A or ImageNet-R for evaluation.
Model | Resolution | IN-1K | IN-C | IN-A | IN-R | #Params | Download |
---|---|---|---|---|---|---|---|
FAN-T-ViT | 224x224 | 79.2 | 57.5 | 15.6 | 42.5 | 7.3M | model |
FAN-S-ViT | 224x224 | 82.5 | 64.5 | 29.1 | 50.4 | 28.0M | model |
FAN-B-ViT | 224x224 | 83.6 | 67.0 | 35.4 | 51.8 | 54.0M | model |
FAN-L-ViT | 224x224 | 83.9 | 67.7 | 37.2 | 53.1 | 80.5M | model |
Model | Resolution | IN-1K / IN-C | City / City-C | COCO / COCO-C | #Params | Download |
---|---|---|---|---|---|---|
FAN-T-Hybrid | 224x224 | 80.1/57.4 | 81.2/57.1 | 50.2/33.1 | 7.4M | model |
FAN-S-Hybrid | 224x224 | 83.5/64.7 | 81.5/66.4 | 53.3/38.7 | 26.3M | model |
FAN-B-Hybrid | 224x224 | 83.9/66.4 | 82.2/66.9 | 54.2/40.6 | 50.4M | model |
FAN-L-Hybrid | 224x224 | 84.3/68.3 | 82.3/68.7 | 55.1/42.0 | 76.8M | model |
Model | Resolution | IN-1K/IN-C | #Params | Download |
---|---|---|---|---|
FAN-B-Hybrid | 224x224 | 85.3/70.5 | 50.4M | model |
FAN-B-Hybrid | 384x384 | 85.6/- | 50.4M | model |
FAN-L-Hybrid | 224x224 | 86.5/73.6 | 76.8M | model |
FAN-L-Hybrid | 384x384 | 87.1/- | 76.8M | model |
The pre-trained model weights for FAN-B-Hybrid and FAN-L-Hybrid on ImageNet22K without fine-tuning on ImageNet-1k are also uploaded. Checkpoints cabn be downloaded by clicking on the model name.
FAN-T training on ImageNet-1K with 4 8-GPU nodes:
python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=$rank_num \
--node_rank=$rank_index --master_addr="ip.addr" --master_port=$MASTER_PORT \
main.py /PATH/TO/IMAGENET/ --model fan_tiny_8_p4_hybrid -b 32 --sched cosine --epochs 300 \
--opt adamw -j 16 --warmup-epochs 5 \
--lr 10e-4 --drop-path .1 --img-size 224 \
--output ../fan_tiny_8_p4_hybrid/ \
--amp --model-ema \
bash scripts/imagenet_c_val.sh $model_name $ckpt
bash scripts/imagenet_a_val.sh $model_name $ckpt
bash scripts/imagenet_r_val.sh $model_name $ckpt
This repository is built using the timm library, DeiT, PVT and SegFormer repositories.
If you find this repository helpful, please consider citing:
@inproceedings{zhou2022understanding,
title = {Understanding The Robustness in Vision Transformers},
author = {Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Anima Anandkumar, Jiashi Feng, Jose M. Alvarez},
booktitle = {International Conference on Machine Learning (ICML)},
year = {2022},
}