Skip to content

MineShadow7/cuda-2024

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Content

How To

  1. Create github account (if not exists);
  2. Make sure SSH clone & commit is working (Connecting to GitHub with SSH);
  3. Fork this repo (just click Fork button on the top of the page, detailed instructions here)
  4. Clone your forked repo into your local machine, use your user instead of username:
git clone [email protected]:username/cuda-2024.git
cd cuda-2024
  1. Go to your group folder, e.g.:
cd 3821B1FI1
  1. Go to needed task folder, e.g.:
cd 1_gelu_omp
  1. Create new folder with your surname and name (make sure it's the same for all tasks), e.g.:
mkdir petrov_ivan
  1. Copy your task source/header files (including main program) into this folder (use copy instead of cp on Windows), e.g.:
cd petrov_ivan
cp /home/usr/lab/*.cpp .
cp /home/usr/lab/*.h .
  1. Push your sources to github repo, e.g.:
cd ..
git add .
git commit -m "1_gelu_omp task"
git push
  1. Go to your repo in browser, click Contribute button on the top of page, then Open pull request. Provide meaningfull request title and description, then Create pull request (see details here).
  2. Go to Pull Requests page in course repo, find your pull request and check if there are no any merge conflicts occur. If merge conflicts happen - resolve it following the instruction provided by github.

Time Measurement

The following scheme is used to measure task execution time:

int main() {
    // ...

    // Warming-up
    Task(input, size / 8);

    // Performance Measuring
    auto start = std::chrono::high_resolution_clock::now();
    auto c = Task(input, size);
    auto end = std::chrono::high_resolution_clock::now();

    // ...
}

Configuration

  • CPU: Intel Core i5 12600K (4 cores, 4 threads)
  • RAM: 16 GB
  • GPU: NVIDIA RTX 4060 (8 GB)
  • Host Compiler: GCC 11.4.0
  • CUDA: 12.6

Tasks

Task #1: OpenMP GELU Implementation

The Gaussian Error Linear Unit (GELU) is an activation function frequently used in Deep Neural Networks (DNNs) and can be thought of as a smoother ReLU.

To approximate GELU function, use the following formula:

GELU(x) = $0.5x(1 + tanh(\sqrt{2 / \pi}(x + 0.044715 * x^3)))$

Implement the function with the following interface in C++:

std::vector<float> GeluOMP(const std::vector<float>& input);

Size of result vector should be the same as for input. Use OpenMP technology to make your function parallel & fast.

Two files are expected to be uploaded:

  • gelu_omp.h
#ifndef __GELU_OMP_H
#define __GELU_OMP_H

#include <vector>

std::vector<float> GeluOMP(const std::vector<float>& input);

#endif // __GELU_OMP_H
  • gelu_omp.cpp
#include "gelu_omp.h"

std::vector<float> GeluOMP(const std::vector<float>& input) {
    // Place your implementation here
}

Task #2: CUDA GELU Implementation

Implement the function with the following interface in CUDA C++ using the formula described above:

std::vector<float> GeluCUDA(const std::vector<float>& input);

Size of result vector should be the same as for input. Use CUDA technology to make your function work on NVIDIA GPU. Try to make it fast.

Two files are expected to be uploaded:

  • gelu_cuda.h
#ifndef __GELU_CUDA_H
#define __GELU_CUDA_H

#include <vector>

std::vector<float> GeluCUDA(const std::vector<float>& input);

#endif // __GELU_CUDA_H
  • gelu_cuda.cu
#include "gelu_cuda.h"

std::vector<float> GeluCUDA(const std::vector<float>& input) {
    // Place your implementation here
}

Task #3: Naive Matrix Multiplication using OpenMP

General matrix multiplication (GEMM) is a very basic and broadly used linear algebra operation applied in high performance computing (HPC), statistics, deep learning and other domains. There are a lot of GEMM algorithms with different mathematical complexity form $O(n^3)$ for naive and block approaches to $O(n^{2.371552})$ for the method descibed by Williams et al. in 2024 [1]. But despite a variety of algorithms with low complexity, block matrix multiplication remains the most used implementation in practice since it fits to modern HW better.

To start learning matrix multiplication smoother, let us start with naive approach here. To compute matrix multiplication result C for matricies A and B, where C = A * B and the size for all matricies are $n*n$, one should use the following formula for each element of C (will consider only square matricies for simplicity):

$c_{ij}=\sum_{k=1}^na_{ik}b_{kj}$

To complete the task one should implement a function that multiplies two square matricies using OpenMP with the following interface:

std::vector<float> NaiveGemmOMP(const std::vector<float>& a,
                                const std::vector<float>& b,
                                int n);

Each matrix must be stored in a linear array by rows, so that a.size()==n*n. Function takes two matricies and their size as inputs, and returns result matrix also stored by rows.

For simplicity, let's consider matrix size is always power of 2.

Two files are expected to be uploaded:

  • naive_gemm_omp.h:
#ifndef __NAIVE_GEMM_OMP_H
#define __NAIVE_GEMM_OMP_H

#include <vector>

std::vector<float> NaiveGemmOMP(const std::vector<float>& a,
                                const std::vector<float>& b,
                                int n);

#endif // __NAIVE_GEMM_OMP_H
  • naive_gemm_omp.cpp:
#include "naive_gemm_omp.h"

std::vector<float> NaiveGemmOMP(const std::vector<float>& a,
                                const std::vector<float>& b,
                                int n) {
    // Place your implementation here
}

Task #4: Naive Matrix Multiplication using CUDA

In this task one should implement naive approach for matrix multiplication in CUDA trying to make it fast enough (pay attention to global memory accesses in your code).

Each matrix must be stored in a linear array by rows, so that a.size()==n*n. Function takes two matricies and their size as inputs, and returns result matrix also stored by rows.

For simplicity, let's consider matrix size is always power of 2.

Two files are expected to be uploaded:

  • naive_gemm_cuda.h:
#ifndef __NAIVE_GEMM_CUDA_H
#define __NAIVE_GEMM_CUDA_H

#include <vector>

std::vector<float> NaiveGemmCUDA(const std::vector<float>& a,
                                 const std::vector<float>& b,
                                 int n);

#endif // __NAIVE_GEMM_CUDA_H
  • naive_gemm_cuda.cu:
#include "naive_gemm_cuda.h"

std::vector<float> NaiveGemmCUDA(const std::vector<float>& a,
                                 const std::vector<float>& b,
                                 int n) {
    // Place your implementation here
}

Task #5: Block Matrix Multiplication using OpenMP

In real applications block-based approach for matrix multiplication can get multiple times faster execution comparing with naive version due to cache friendly approach. To prove this in practice, implement such a version in C++ using OpenMP.

In block version algorithm could be divided into three stages:

  1. Split matricies into blocks (block size normally affects performance significantly so choose it consciously);
  2. Multiply two blocks to get partial result;
  3. Replay step 2 for all row/column blocks accumulating values into a single result block.

From math perspective, block matrix multiplication could be described by the following formula, where $C_{IJ}$, $A_{IK}$ and $B_{KJ}$ are sub-matricies with the size $block_size*block_size$:

$C_{IJ}=\sum_{k=1}^{block_count}A_{IK}B_{KJ}$

Each matrix must be stored in a linear array by rows, so that a.size()==n*n. Function takes two matricies and their size as inputs, and returns result matrix also stored by rows.

For simplicity, let's consider matrix size is always power of 2.

Two files are expected to be uploaded:

  • block_gemm_omp.h:
#ifndef __BLOCK_GEMM_OMP_H
#define __BLOCK_GEMM_OMP_H

#include <vector>

std::vector<float> BlockGemmOMP(const std::vector<float>& a,
                                const std::vector<float>& b,
                                int n);

#endif // __BLOCK_GEMM_OMP_H
  • block_gemm_omp.cpp:
#include "block_gemm_omp.h"

std::vector<float> BlockGemmOMP(const std::vector<float>& a,
                                const std::vector<float>& b,
                                int n) {
    // Place your implementation here
}

As in previous task, let us consider all matricies are square.

Task #6: Block Matrix Multiplication using CUDA

In CUDA C++ block-based approach looks similar. But to get better performance one should use CUDA shared memory to store each particular block while computations. With this consideration, algorithm will be the following:

  1. A single CUDA block should compute a single block of result matrix C, a single CUDA thread - a single matrix C element;
  2. For each A block in a row and B block in a column:
    1. Load A block into shared memory;
    2. Load B block into shared memory;
    3. Synchronize over all threads in block;
    4. Compute BlockA * BlockB and accumulate into C block in shared memory;
    5. Synchronize over all threads in block;
  3. Dump block C from shared to global memory.

Each matrix must be stored in a linear array by rows, so that a.size()==n*n. Function takes two matricies and their size as inputs, and returns result matrix also stored by rows.

For simplicity, let's consider matrix size is always power of 2.

Two files are expected to be uploaded:

  • block_gemm_cuda.h:
#ifndef __BLOCK_GEMM_CUDA_H
#define __BLOCK_GEMM_CUDA_H

#include <vector>

std::vector<float> BlockGemmCUDA(const std::vector<float>& a,
                                 const std::vector<float>& b,
                                 int n);

#endif // __BLOCK_GEMM_CUDA_H
  • block_gemm_cuda.cu:
#include "block_gemm_cuda.h"

std::vector<float> BlockGemmCUDA(const std::vector<float>& a,
                                 const std::vector<float>& b,
                                 int n) {
    // Place your implementation here
}

Task #7: Matrix Multiplication using cuBLAS

The most performant way to multiply two matrices on particular hardware is to use vendor-provided library for this purpose. In CUDA it's cuBLAS. Try to use cuBLAS API to implement general matrix multiplication in most performant way.

Each matrix must be stored in a linear array by rows, so that a.size()==n*n. Function takes two matricies and their size as inputs, and returns result matrix also stored by rows.

For simplicity, let's consider matrix size is always power of 2.

Note, that in cuBLAS API matrix is expected to be stored by columns, so additional transpose may be required.

Two files are expected to be uploaded:

  • gemm_cublas.h:
#ifndef __GEMM_CUBLAS_H
#define __GEMM_CUBLAS_H

#include <vector>

std::vector<float> GemmCUBLAS(const std::vector<float>& a,
                              const std::vector<float>& b,
                              int n);

#endif // __GEMM_CUBLAS_H
  • gemm_cublas.cu:
#include "gemm_cublas.h"

std::vector<float> GemmCUBLAS(const std::vector<float>& a,
                              const std::vector<float>& b,
                              int n) {
    // Place your implementation here
}

Task #8: FFT (Fast Fourier Transform) using cuFFT

Another widely used operation in HPC & signal processing is discrete Fourier Transform. Naive approach (by definition) has $O(n^2)$ complexity and is not used in practice due to its slowness. Better way is Fast Fourier Transform (FFT) algorithm with $O(n*log(n))$ complexity.

Due to its frequent use, FFT algorithm implementation is normally a part of vendor-optimized solutions for various hardware chips. For NVIDIA GPUs one should take cuFFT library.

To pass the task one should implement a funtion that takes $batch$ signals of $n$ complex elements, and performs complex-to-complex forward and than inverse Fourier transform for them. For better performance use cuFFT API.

Required function should have the following prototype:

std::vector<float> FffCUFFT(const std::vector<float>& input, int batch);

Here $batch$ is a number of independent signals, $input$ contains complex values in the format of $(real, imaginary)$ pairs of floats storing pair by pair. So $input$ array size must be equal to $2 * n * batch$.

The function should perform the following actions:

  1. Compute forward Fourier transform for $input$;
  2. Compute inverse Fourier transform for the result of step 1;
  3. Normalize result of step 2 by $n$.

Returned array must store result of step 3 in the same format of $(real, imaginary)$ pairs as $input$ and have the same size.

Note, that due to Fourier Transform math properties, result array will have the same values as input one. This specificity could be used for self-checking.

Two files are expected to be uploaded:

  • fft_cufft.h:
#ifndef __FFT_CUFFT_H
#define __FFT_CUFFT_H

#include <vector>

std::vector<float> FffCUFFT(const std::vector<float>& input, int batch);

#endif // __FFT_CUFFT_H
  • fft_cufft.cu:
#include "fft_cufft.h"

std::vector<float> FffCUFFT(const std::vector<float>& input, int batch) {
    // Place your implementation here
}

Task #9: OpenCL GELU Implementation

Implement GELU function with the following interface in OpenCL using the formula described in task #1:

std::vector<float> GeluOCL(const std::vector<float>& input);

Size of result vector should be the same as for input. Use OpenCL technology to make your function work on NVIDIA GPU. Try to make it fast.

Use CL_DEVICE_GPU flag to choose GPU device. Use zero platform and zero device. Store your OpenCL kernel in a string constant.

Two files are expected to be uploaded:

  • gelu_ocl.h
#ifndef __GELU_OCL_H
#define __GELU_OCL_H

#include <vector>

std::vector<float> GeluOCL(const std::vector<float>& input);

#endif // __GELU_OCL_H
  • gelu_ocl.cpp
#include "gelu_ocl.h"

std::vector<float> GeluOCL(const std::vector<float>& input) {
    // Place your implementation here
}

Results

1_gelu_omp (134217728 elements)

Group Name Result
3821B1FI1 borovkov_sergey 0.1786
3821B1FI2 nogin_denis 0.2464
3821B1PE3 nedelin_dmitry 0.2488
3821B1FI1 balyasov_ivan 0.2573
3821B1PE2 karagodin_andrey 0.2666
3821B1FI1 lysanova_julia 0.2671
3821B1FI3 kuznetsov_artyom 0.2679
3821B1FI2 soloninko_andrey 0.2694
3821B1FI3 vasilev_ivan 0.2725
3821B1FI3 polozov_vladislav 0.2766
3821B1PE1 afanasyev_aleksey 0.2791
3821B1FI3 kulikov_artem 0.2794
3821B1PE1 kudinov_nikita 0.2818
3821B1FI2 kostanyan_arsen 0.2820
3821B1PE2 vinokurov_ivan 0.2848
3821B1FI1 shipitsin_alex 0.2916
3821B1PE1 yurin_andrey 0.2945
3821B1FI3 durandin_vladimir 0.2964
3821B1PE1 kashin_stepan 0.2973
3821B1FI2 petrov_maksim 0.3031
3821B1FI2 kostin_artem 0.3777
3821B1PE1 chuvashov_andrey 0.4449
3821B1PE1 kriseev_mikhail 0.4687
3821B1FI3 simonyan_suren 0.4708
3821B1FI3 kulagin_aleksandr 0.4800
3821B1FI1 bonyuk_peter 0.4823
3821B1PE1 saratova_marina 0.4975
3821B1PE1 smirnova_daria 0.5024
3821B1PE3 Kachalov_Mikhail 0.5203
3821B1FI2 kazantsev_evgeny 0.5381
3821B1PE1 vinichuk_timofey 0.5684
3821B1PE2 zhatkin_vyacheslav 0.6493
3821B1PE1 kirillov_maxim 0.6687
3821B1FI2 zakharov_artem 0.6916
3821B1FI3 sadikov_damir 0.6978
3821B1FI1 kashirin_alexander 0.6999
3821B1FI1 bodrov_daniil 0.7005
3821B1FI3 sharapov_georgiy 0.7042
3821B1PE1 sokolova_daria 0.7045
3821B1PE3 Kokin_Ivan 0.7088
3821B1FI1 veselov_ilya 0.7132
3821B1FI3 volodin_evgeniy 0.7137
3821B1PE2 belan_vadim 0.7160
3821B1FI3 safronov_mikhail 0.7176
3821B1FI2 travin_maksim 0.7180
3821B1FI3 korablev_nikita 0.7191
3821B1PE1 savchuk_anton 0.7367
3821B1PE1 morgachev_stepan 0.7421
3821B1FI3 benduyzhko_tatiana 0.7471
3821B1FI1 alexseev_danila 0.7535
3821B1FI1 akopyan_zal 0.7544
3821B1FI3 kulaev_zhenya 0.7553
3821B1FI1 mirzakhmedov_alexander 0.7631
3821B1FI3 prokofev_kirill 0.7670
3821B1FI3 ryabkov_vladislav 0.7706
3821B1FI3 tyulkina_olga 0.7711
3821B1PE1 smirnov_leonid 0.7726
3821B1PE1 khramov_ivan 0.7728
3821B1PE1 tushentsova_karina 0.7744
3821B1PE1 pozdnyakov_vasya 0.7753
3821B1PE3 Musaev_Ilgar 0.7776
3821B1PE1 khodyrev_fedor 0.7787
3821B1PE1 moiseev_nikita 0.7863
3821B1PE1 kiselev_igor 0.7866
3821B1PE1 podyachikh_mikhail 0.7868
3821B1FI1 shmelev_ivan 0.7888
3821B1FI3 ivanov_nikita 0.7888
3821B1FI3 safarov_nurlan 0.7924
REF REF 0.8126
3821B1PE3 smirnov_pavel 1.4899
3821B1PE1 vanushkin_dmitry 1.5001

2_gelu_cuda (134217728 elements)

Group Name Result
3821B1FI3 durandin_vladimir 0.2092
3821B1PE2 belan_vadim 0.2278
3821B1FI3 ryabkov_vladislav 0.2302
3821B1PE1 kriseev_mikhail 0.2370
3821B1PE2 savchuk_anton 0.2378
3821B1FI3 kulikov_artem 0.2385
3821B1PE1 kudinov_nikita 0.2386
3821B1FI1 bodrov_daniil 0.2399
3821B1FI3 prokofev_kirill 0.2402
3821B1PE1 kirillov_maxim 0.2404
3821B1PE1 vinichuk_timofey 0.2407
3821B1FI3 kulaev_zhenya 0.2410
3821B1FI3 polozov_vladislav 0.2413
3821B1FI1 shipitsin_alex 0.2419
3821B1PE1 chuvashov_andrey 0.2420
3821B1FI1 shmelev_ivan 0.2431
3821B1FI3 kuznetsov_artyom 0.2452
3821B1FI2 zakharov_artem 0.2455
3821B1FI1 akopyan_zal 0.2461
3821B1PE3 smirnov_pavel 0.2461
3821B1FI3 sharapov_georgiy 0.2466
3821B1FI3 vasilev_ivan 0.2467
3821B1FI1 veselov_ilya 0.2470
3821B1FI3 tyulkina_olga 0.2471
3821B1FI2 kostanyan_arsen 0.2477
3821B1FI2 kostin_artem 0.2482
3821B1FI2 travin_maksim 0.2498
3821B1PE1 smirnov_leonid 0.2500
3821B1PE3 Musaev_Ilgar 0.2500
3821B1FI3 kulagin_aleksandr 0.2506
3821B1FI3 volodin_evgeniy 0.2509
3821B1FI1 alexseev_danila 0.2509
3821B1PE1 saratova_marina 0.2529
3821B1FI2 nogin_denis 0.2537
3821B1FI2 petrov_maksim 0.2540
3821B1PE1 morgachev_stepan 0.2549
3821B1PE2 karagodin_andrey 0.2570
3821B1FI1 kashirin_alexander 0.2571
3821B1FI3 sadikov_damir 0.2584
3821B1FI3 benduyzhko_tatiana 0.2593
REF REF 0.2598
3821B1FI3 safarov_nurlan 0.2605
3821B1PE1 kiselev_igor 0.2607
3821B1FI3 ivanov_nikita 0.2627
3821B1FI1 lysanova_julia 0.2632
3821B1FI2 soloninko_andrey 0.2642
3821B1FI1 balyasov_ivan 0.2651
3821B1FI3 korablev_nikita 0.2653
3821B1PE3 nedelin_dmitry 0.2666
3821B1PE1 kashin_stepan 0.2667
3821B1FI3 simonyan_suren 0.2671
3821B1FI3 safronov_mikhail 0.2686
3821B1FI1 bonyuk_peter 0.2693
3821B1FI1 borovkov_sergey 0.2701
3821B1PE3 Kachalov_Mikhail 0.2707
3821B1PE1 tushentsova_karina 0.2711
3821B1PE1 khodyrev_fedor 0.2716
3821B1PE1 afanasyev_aleksey 0.2717
3821B1PE1 yurin_andrey 0.2718
3821B1FI2 kazantsev_evgeny 0.2731
3821B1PE2 vinokurov_ivan 0.2754
3821B1PE3 Kokin_Ivan 0.2769
3821B1FI1 mirzakhmedov_alexander 0.2804
3821B1PE1 smirnova_daria 0.2876
3821B1PE1 khramov_ivan 0.2879
3821B1PE1 pozdnyakov_vasya 0.2983
3821B1PE1 moiseev_nikita 0.3140
3821B1PE1 vanushkin_dmitry 0.3671
3821B1PE2 zhatkin_vyacheslav 0.4486
3821B1PE2 derun_andrei TEST FAILED
3821B1PE1 sokolova_daria BUILD FAILED

3_naive_gemm_omp (1024 elements)

Group Name Result
3821B1FI1 shipitsin_alex 0.0973
3821B1PE1 kashin_stepan 0.1018
3821B1FI3 vasilev_ivan 0.1083
3821B1PE1 afanasyev_aleksey 0.1088
3821B1PE1 kudinov_nikita 0.1141
3821B1PE1 yurin_andrey 0.1144
3821B1FI3 ryabkov_vladislav 0.1248
3821B1FI1 kashirin_alexander 0.1256
3821B1FI1 akopyan_zal 0.1274
3821B1FI1 bonyuk_peter 0.1278
3821B1FI1 mirzakhmedov_alexander 0.1316
3821B1FI3 sharapov_georgiy 0.1553
3821B1FI2 travin_maksim 0.1666
3821B1FI2 soloninko_andrey 0.1670
3821B1FI2 kazantsev_evgeny 0.1676
3821B1FI3 ivanov_nikita 0.1681
3821B1FI2 nogin_denis 0.1685
3821B1FI1 bodrov_daniil 0.1690
3821B1FI3 durandin_vladimir 0.1704
3821B1FI2 petrov_maksim 0.1707
3821B1FI3 safronov_mikhail 0.1715
3821B1PE1 vanushkin_dmitry 0.1717
3821B1FI3 sadikov_damir 0.1747
3821B1FI2 kostanyan_arsen 0.1748
3821B1FI3 kulaev_zhenya 0.1750
3821B1FI3 safarov_nurlan 0.1800
3821B1FI3 prokofev_kirill 0.5781
3821B1FI3 polozov_vladislav 0.6071
3821B1FI2 kostin_artem 0.6207
3821B1PE1 pozdnyakov_vasya 0.6863
3821B1FI3 korablev_nikita 0.7212
3821B1PE2 vinokurov_ivan 0.7301
3821B1PE1 khodyrev_fedor 0.7400
3821B1FI1 shmelev_ivan 0.7710
3821B1FI1 alexseev_danila 0.7757
3821B1PE3 Musaev_Ilgar 0.7770
3821B1PE2 zhatkin_vyacheslav 0.7813
3821B1FI1 veselov_ilya 0.7819
3821B1FI1 balyasov_ivan 0.7837
3821B1PE3 Kokin_Ivan 0.7839
3821B1FI3 simonyan_suren 0.7843
3821B1FI1 lysanova_julia 0.7861
3821B1PE3 smirnov_pavel 0.7883
3821B1PE1 moiseev_nikita 0.7928
3821B1PE2 savchuk_anton 0.7977
3821B1PE1 chuvashov_andrey 0.8009
3821B1FI3 benduyzhko_tatiana 0.8010
3821B1PE2 belan_vadim 0.8026
3821B1PE1 smirnova_daria 0.8036
3821B1PE1 morgachev_stepan 0.8060
3821B1FI3 volodin_evgeniy 0.8086
3821B1PE1 khramov_ivan 0.8116
3821B1PE1 kirillov_maxim 0.8121
3821B1FI3 kulagin_aleksandr 0.8122
3821B1PE1 kiselev_igor 0.8134
3821B1PE3 nedelin_dmitry 0.8158
3821B1FI3 kulikov_artem 0.8203
3821B1PE1 vinichuk_timofey 0.8271
3821B1PE1 saratova_marina 0.8281
3821B1PE2 karagodin_andrey 0.8311
3821B1PE1 sokolova_daria 0.8320
3821B1PE1 smirnov_leonid 0.8334
3821B1PE1 kriseev_mikhail 0.8339
REF REF 0.8379
3821B1FI3 tyulkina_olga 0.8383
3821B1FI2 zakharov_artem 0.8446
3821B1FI1 borovkov_sergey 0.8487
3821B1PE3 Kachalov_Mikhail 0.8702
3821B1FI3 kuznetsov_artyom 0.9010
3821B1PE1 tushentsova_karina BUILD FAILED

4_naive_gemm_cuda (4096 elements)

Group Name Result
3821B1PE2 belan_vadim 0.1356
3821B1FI1 shipitsin_alex 0.1586
3821B1PE1 yurin_andrey 0.1635
3821B1FI2 kostanyan_arsen 0.1751
3821B1FI3 kulaev_zhenya 0.1762
3821B1FI1 veselov_ilya 0.1763
3821B1FI2 nogin_denis 0.1784
3821B1FI3 ivanov_nikita 0.1789
3821B1FI1 bodrov_daniil 0.1792
3821B1PE1 kriseev_mikhail 0.1813
3821B1FI3 sharapov_georgiy 0.1824
3821B1PE1 chuvashov_andrey 0.1844
3821B1PE1 vanushkin_dmitry 0.1865
3821B1PE1 kiselev_igor 0.1866
3821B1FI1 shmelev_ivan 0.1867
REF REF 0.1877
3821B1FI2 kostin_artem 0.1878
3821B1PE1 tushentsova_karina 0.1901
3821B1FI2 petrov_maksim 0.1901
3821B1FI3 safarov_nurlan 0.1937
3821B1FI3 polozov_vladislav 0.2280
3821B1FI3 simonyan_suren 0.2324
3821B1FI3 kuznetsov_artyom 0.2329
3821B1PE1 pozdnyakov_vasya 0.2331
3821B1FI3 kulikov_artem 0.2340
3821B1FI1 mirzakhmedov_alexander 0.2353
3821B1FI3 benduyzhko_tatiana 0.2353
3821B1FI1 balyasov_ivan 0.2354
3821B1FI1 akopyan_zal 0.2355
3821B1PE1 smirnov_leonid 0.2357
3821B1FI3 tyulkina_olga 0.2358
3821B1FI3 prokofev_kirill 0.2369
3821B1FI1 borovkov_sergey 0.2420
3821B1FI1 alexseev_danila 0.2506
3821B1FI2 zakharov_artem 0.2689
3821B1FI3 volodin_evgeniy 0.2805
3821B1PE3 Musaev_Ilgar 0.2810
3821B1FI3 korablev_nikita 0.2824
3821B1PE3 smirnov_pavel 0.3040
3821B1PE1 vinichuk_timofey 0.3297
3821B1PE2 savchuk_anton 0.3301
3821B1PE1 kashin_stepan 0.3490
3821B1PE1 kudinov_nikita 0.3502
3821B1PE1 afanasyev_aleksey 0.3506
3821B1PE1 sokolova_daria 0.3953
3821B1PE1 kirillov_maxim 0.3970
3821B1FI1 kashirin_alexander 0.3984
3821B1PE3 Kokin Ivan 0.4026
3821B1PE1 khramov_ivan 0.4043
3821B1PE1 morgachev_stepan 0.4061
3821B1PE2 vinokurov_ivan 0.4068
3821B1PE1 moiseev_nikita 0.4103
3821B1PE3 nedelin_dmitry 0.4104
3821B1FI3 sadikov_damir 0.4133
3821B1PE1 khodyrev_fedor 0.4135
3821B1FI1 lysanova_julia 0.4157
3821B1FI3 safronov_mikhail 0.4167
3821B1PE3 Kachalov_Mikhail 0.4213
3821B1FI3 ryabkov_vladislav 0.4258
3821B1PE2 zhatkin_vyacheslav 0.4288
3821B1FI1 bonyuk_peter 0.4290
3821B1FI2 soloninko_andrey 0.4296
3821B1FI2 kazantsev_evgeny 0.4369
3821B1FI3 durandin_vladimir 0.4396
3821B1FI2 travin_maksim 0.5205
3821B1PE1 smirnova_daria 0.5454
3821B1PE1 saratova_marina 0.5459
3821B1FI3 vasilev_ivan 0.5474
3821B1PE2 karagodin_andrey 0.5503
3821B1FI3 kulagin_aleksandr 0.5823
3821B1PE2 derun_andrei 1.0889

5_block_gemm_omp (1024 elements)

Group Name Result
3821B1FI1 bodrov_daniil 0.0512
3821B1FI3 benduyzhko_tatiana 0.1023
3821B1FI1 alexseev_danila 0.1026
3821B1PE1 smirnova_daria 0.1223
3821B1PE1 sokolova_daria 0.1505
3821B1FI3 korablev_nikita 0.1520
3821B1FI3 volodin_evgeniy 0.1820
3821B1FI3 vasilev_ivan 0.1831
3821B1FI3 sadikov_damir 0.1878
REF REF 0.1980
3821B1FI3 sharapov_georgiy 0.2053
3821B1PE1 chuvashov_andrey 0.2088
3821B1FI3 ryabkov_vladislav 0.2090
3821B1FI3 polozov_vladislav 0.2145
3821B1PE1 vinichuk_timofey 0.2175
3821B1PE1 khramov_ivan 0.2183
3821B1FI1 kashirin_alexander 0.2185
3821B1PE1 smirnov_leonid 0.2192
3821B1PE1 pozdnyakov_vasya 0.2221
3821B1FI2 kostanyan_arsen 0.2221
3821B1FI1 balyasov_ivan 0.2227
3821B1PE1 kirillov_maxim 0.2227
3821B1FI3 kuznetsov_artyom 0.2230
3821B1FI2 soloninko_andrey 0.2235
3821B1FI1 shmelev_ivan 0.2245
3821B1PE1 saratova_marina 0.2253
3821B1FI1 lysanova_julia 0.2255
3821B1PE3 Musaev_Ilgar 0.2258
3821B1FI3 safarov_nurlan 0.2261
3821B1PE2 vinokurov_ivan 0.2267
3821B1PE1 khodyrev_fedor 0.2271
3821B1FI3 ivanov_nikita 0.2273
3821B1FI1 mirzakhmedov_alexander 0.2274
3821B1PE2 karagodin_andrey 0.2280
3821B1PE1 moiseev_nikita 0.2299
3821B1PE1 yurin_andrey 0.2314
3821B1FI2 travin_maksim 0.2338
3821B1FI1 borovkov_sergey 0.2371
3821B1FI1 akopyan_zal 0.2378
3821B1FI3 kulikov_artem 0.2386
3821B1PE3 smirnov_pavel 0.2406
3821B1FI2 nogin_denis 0.2425
3821B1FI3 prokofev_kirill 0.2551
3821B1PE1 kiselev_igor 0.2596
3821B1FI1 veselov_ilya 0.2624
3821B1PE1 kriseev_mikhail 0.2634
3821B1PE3 nedelin_dmitry 0.2685
3821B1PE1 vanushkin_dmitry 0.2708
3821B1FI1 bonyuk_peter 0.2772
3821B1FI2 kostin_artem 0.2776
3821B1PE1 morgachev_stepan 0.3136
3821B1PE1 tushentsova_karina 0.3137
3821B1FI2 petrov_maksim 0.3179
3821B1FI3 kulagin_aleksandr 0.3274
3821B1FI2 zakharov_artem 0.3504
3821B1PE1 kashin_stepan 0.3548
3821B1FI2 kazantsev_evgeny 0.3563
3821B1PE1 kudinov_nikita 0.3714
3821B1FI1 shipitsin_alex 0.3734
3821B1PE2 savchuk_anton 0.3778
3821B1PE1 afanasyev_aleksey 0.3886
3821B1PE2 belan_vadim 0.3897
3821B1PE2 zhatkin_vyacheslav 0.3958
3821B1FI3 tyulkina_olga 0.5011
3821B1FI3 kulaev_zhenya 0.5147
3821B1FI3 durandin_vladimir 0.5392
3821B1FI3 simonyan_suren 0.5419
3821B1FI3 safronov_mikhail BUILD FAILED

6_block_gemm_cuda (4096 elements)

Group Name Result
3821B1FI1 alexseev_danila 0.1397
3821B1FI2 travin_maksim 0.1420
3821B1FI3 benduyzhko_tatiana 0.1439
3821B1FI3 kulaev_zhenya 0.1442
3821B1PE1 chuvashov_andrey 0.1444
3821B1FI1 bodrov_daniil 0.1447
3821B1FI2 soloninko_andrey 0.1473
3821B1PE2 belan_vadim 0.1474
3821B1FI2 nogin_denis 0.1491
3821B1FI3 vasilev_ivan 0.1495
3821B1PE1 morgachev_stepan 0.1497
3821B1FI1 akopyan_zal 0.1502
3821B1FI3 sadikov_damir 0.1502
3821B1PE1 pozdnyakov_vasya 0.1503
3821B1FI1 mirzakhmedov_alexander 0.1506
3821B1FI3 kuznetsov_artyom 0.1516
3821B1FI3 simonyan_suren 0.1521
3821B1FI3 polozov_vladislav 0.1522
REF REF 0.1524
3821B1PE1 smirnov_leonid 0.1529
3821B1FI3 tyulkina_olga 0.1541
3821B1FI3 sharapov_georgiy 0.1541
3821B1FI3 safronov_mikhail 0.1545
3821B1FI3 kulikov_artem 0.1550
3821B1FI2 petrov_maksim 0.1577
3821B1FI1 shmelev_ivan 0.1592
3821B1PE1 khramov_ivan 0.1595
3821B1FI3 ivanov_nikita 0.1609
3821B1PE1 khodyrev_fedor 0.1609
3821B1PE1 vanushkin_dmitry 0.1644
3821B1PE1 yurin_andrey 0.2017
3821B1FI1 shipitsin_alex 0.2031
3821B1FI3 ryabkov_vladislav 0.2438
3821B1FI3 volodin_evgeniy 0.2594
3821B1FI2 kostin_artem 0.2782
3821B1PE3 Musaev_Ilgar 0.3034
3821B1FI1 balyasov_ivan 0.3135
3821B1FI2 kostanyan_arsen 0.3151
3821B1FI1 kashirin_alexander 0.3156
3821B1PE1 smirnova_daria 0.3179
3821B1PE3 nedelin_dmitry 0.3181
3821B1PE3 smirnov_pavel 0.3197
3821B1FI2 zakharov_artem 0.3207
3821B1PE2 zhatkin_vyacheslav 0.3212
3821B1FI3 kulagin_aleksandr 0.3213
3821B1PE1 saratova_marina 0.3220
3821B1PE1 kirillov_maxim 0.3221
3821B1FI1 lysanova_julia 0.3228
3821B1FI1 borovkov_sergey 0.3230
3821B1FI1 bonyuk_peter 0.3243
3821B1PE1 tushentsova_karina 0.3251
3821B1PE2 savchuk_anton 0.3255
3821B1FI3 prokofev_kirill 0.3260
3821B1FI3 durandin_vladimir 0.3261
3821B1PE2 karagodin_andrey 0.3278
3821B1PE1 vinichuk_timofey 0.3288
3821B1FI3 safarov_nurlan 0.3326
3821B1FI2 kazantsev_evgeny 0.3351
3821B1FI1 veselov_ilya 0.3456
3821B1PE1 moiseev_nikita 0.3458
3821B1FI3 korablev_nikita 0.3486
3821B1PE1 kudinov_nikita 0.4424
3821B1PE1 kiselev_igor 0.4490
3821B1PE1 afanasyev_aleksey 0.4522
3821B1PE1 kashin_stepan 0.4533
3821B1PE1 kriseev_mikhail 0.7497
3821B1PE2 derun_andrei TEST FAILED
3821B1PE2 vinokurov_ivan BUILD FAILED

7_gemm_cublas (4096 elements)

Group Name Result
3821B1FI1 shipitsin_alex 0.0408
3821B1FI3 vasilev_ivan 0.0433
3821B1FI3 ivanov_nikita 0.0454
3821B1PE1 kudinov_nikita 0.0464
3821B1PE1 kiselev_igor 0.0472
3821B1PE1 chuvashov_andrey 0.0473
3821B1PE1 vanushkin_dmitry 0.0475
3821B1FI3 kulikov_artem 0.0478
3821B1FI3 ryabkov_vladislav 0.0482
3821B1FI1 alexseev_danila 0.0496
3821B1FI3 benduyzhko_tatiana 0.0497
3821B1PE1 yurin_andrey 0.0498
3821B1PE3 Musaev_Ilgar 0.0498
3821B1PE1 vinichuk_timofey 0.0532
3821B1PE1 kashin_stepan 0.0533
3821B1FI3 prokofev_kirill 0.0541
3821B1FI1 akopyan_zal 0.0547
3821B1FI3 kulagin_aleksandr 0.0548
3821B1FI3 safronov_mikhail 0.0551
3821B1PE2 vinokurov_ivan 0.0553
3821B1PE1 kirillov_maxim 0.0554
3821B1FI1 kashirin_alexander 0.0557
3821B1FI1 mirzakhmedov_alexander 0.0557
3821B1FI3 kuznetsov_artyom 0.0559
3821B1FI1 bonyuk_peter 0.0561
3821B1FI1 veselov_ilya 0.0566
3821B1PE1 khodyrev_fedor 0.0566
3821B1PE3 nedelin_dmitry 0.0568
3821B1FI2 kostanyan_arsen 0.0570
3821B1FI1 bodrov_daniil 0.0579
3821B1FI3 simonyan_suren 0.0579
3821B1FI3 tyulkina_olga 0.0582
3821B1PE1 afanasyev_aleksey 0.0583
3821B1PE1 pozdnyakov_vasya 0.0583
3821B1FI3 sadikov_damir 0.0585
3821B1FI3 korablev_nikita 0.0590
3821B1FI2 travin_maksim 0.0592
3821B1FI3 polozov_vladislav 0.0596
3821B1PE1 kriseev_mikhail 0.0599
3821B1FI1 shmelev_ivan 0.0600
3821B1FI3 kulaev_zhenya 0.0600
3821B1PE1 morgachev_stepan 0.0600
3821B1PE1 smirnov_leonid 0.0601
3821B1PE3 smirnov_pavel 0.0601
REF REF 0.0601
3821B1FI2 soloninko_andrey 0.0602
3821B1PE1 khramov_ivan 0.0608
3821B1PE1 smirnova_daria 0.0724
3821B1FI2 kostin_artem 0.0757
3821B1PE2 zhatkin_vyacheslav 0.0768
3821B1PE1 moiseev_nikita 0.0786
3821B1FI1 borovkov_sergey 0.0798
3821B1FI3 sharapov_georgiy 0.0800
3821B1PE1 tushentsova_karina 0.0800
3821B1FI2 zakharov_artem 0.0803
3821B1FI2 kazantsev_evgeny 0.0804
3821B1FI1 lysanova_julia 0.0815
3821B1FI1 balyasov_ivan 0.0818
3821B1FI3 durandin_vladimir 0.0830
3821B1PE1 saratova_marina 0.0830
3821B1PE2 karagodin_andrey 0.0831
3821B1FI3 safarov_nurlan 0.0863
3821B1FI2 petrov_maksim 0.0886
3821B1FI3 volodin_evgeniy 0.0902
3821B1PE2 belan_vadim 0.7925
3821B1PE2 savchuk_anton 0.7926
3821B1FI3 vasliev_ivan BUILD FAILED
3821B1PE2 derun_andrei TEST FAILED

8_fft_cufft (131072 elements)

Group Name Result
3821B1PE1 kirillov_maxim 0.1060
3821B1PE1 vanushkin_dmitry 0.1077
3821B1PE1 tushentsova_karina 0.1138
3821B1FI1 bodrov_daniil 0.1173
3821B1FI3 safronov_mikhail 0.1197
3821B1FI3 ivanov_nikita 0.1220
3821B1PE2 belan_vadim 0.1220
3821B1PE1 kashin_stepan 0.1234
3821B1FI3 volodin_evgeniy 0.1238
3821B1FI3 sadikov_damir 0.1257
3821B1FI1 lysanova_julia 0.1268
3821B1PE1 afanasyev_aleksey 0.1270
3821B1FI2 kostanyan_arsen 0.1324
3821B1PE1 kriseev_mikhail 0.1326
3821B1PE1 morgachev_stepan 0.1331
3821B1FI3 simonyan_suren 0.1332
3821B1FI2 soloninko_andrey 0.1346
3821B1FI2 kazantsev_evgeny 0.1365
3821B1FI3 kulaev_zhenya 0.1375
3821B1FI3 kuznetsov_artyom 0.1375
3821B1FI3 kulikov_artem 0.1375
3821B1FI3 polozov_vladislav 0.1379
3821B1PE1 moiseev_nikita 0.1384
3821B1FI3 benduyzhko_tatiana 0.1388
3821B1FI3 kulagin_aleksandr 0.1393
3821B1FI1 akopyan_zal 0.1396
3821B1PE1 chuvashov_andrey 0.1400
3821B1PE3 Musaev_Ilgar 0.1402
3821B1PE1 smirnov_leonid 0.1420
3821B1PE1 yurin_andrey 0.1426
3821B1PE1 khodyrev_fedor 0.1440
3821B1FI1 shmelev_ivan 0.1441
3821B1FI1 shipitsin_alex 0.1447
3821B1PE1 khramov_ivan 0.1460
3821B1PE1 pozdnyakov_vasya 0.1470
3821B1FI2 travin_maksim 0.1476
3821B1PE1 kiselev_igor 0.1489
3821B1PE1 kudinov_nikita 0.1532
3821B1FI1 borovkov_sergey 0.1543
3821B1FI2 kostin_artem 0.1549
3821B1FI3 safarov_nurlan 0.1550
3821B1FI3 sharapov_georgiy 0.1574
3821B1FI1 balyasov_ivan 0.1580
3821B1FI3 prokofev_kirill 0.1589
3821B1FI3 tyulkina_olga 0.1595
3821B1FI3 korablev_nikita 0.1595
3821B1FI3 durandin_vladimir 0.1598
3821B1PE3 nedelin_dmitry 0.1599
3821B1PE2 vinokurov_ivan 0.1610
3821B1PE1 saratova_marina 0.1629
3821B1PE2 karagodin_andrey 0.1635
3821B1FI2 zakharov_artem 0.1637
3821B1PE1 smirnova_daria 0.1650
3821B1FI1 alexseev_danila 0.1727
3821B1FI2 petrov_maksim 0.1802
3821B1FI3 ryabkov_vladislav 0.1848
3821B1FI3 vasilev_ivan 0.1867
3821B1FI1 mirzakhmedov_alexander 0.1926
3821B1FI1 kashirin_alexander 0.1991
3821B1FI1 veselov_ilya 0.1996
3821B1PE3 smirnov_pavel 0.2139
REF REF 0.2309
3821B1PE2 zhatkin_vyacheslav 0.3332
3821B1PE2 savchuk_anton 0.3804
3821B1FI1 bonyuk_peter BUILD FAILED
3821B1PE2 derun_andrei RUN FAILED

9_gelu_ocl (134217728 elements)

Group Name Result
3821B1PE1 kiselev_igor 0.2150
3821B1PE2 karagodin_andrey 0.2199
3821B1FI3 prokofev_kirill 0.2311
3821B1FI3 kulaev_zhenya 0.2314
3821B1FI1 shmelev_ivan 0.2458
3821B1FI3 safronov_mikhail 0.2486
REF REF 0.2621
3821B1FI3 kuznetsov_artyom 0.2646
3821B1FI3 polozov_vladislav 0.2720
3821B1PE1 moiseev_nikita 0.2744
3821B1FI3 ryabkov_vladislav 0.2764
3821B1FI3 kulikov_artem 0.2766
3821B1FI3 sadikov_damir 0.2768
3821B1FI2 kostanyan_arsen 0.2790
3821B1FI3 simonyan_suren 0.2802
3821B1PE3 Musaev_Ilgar 0.2804
3821B1FI1 akopyan_zal 0.2809
3821B1FI1 borovkov_sergey 0.2825
3821B1FI3 safarov_nurlan 0.2836
3821B1FI1 balyasov_ivan 0.2840
3821B1PE1 khramov_ivan 0.2844
3821B1PE1 kudinov_nikita 0.2848
3821B1FI1 lysanova_julia 0.2849
3821B1FI3 benduyzhko_tatiana 0.2856
3821B1FI3 sharapov_georgiy 0.2870
3821B1PE1 kashin_stepan 0.2873
3821B1PE1 yurin_andrey 0.2876
3821B1FI1 mirzakhmedov_alexander 0.2888
3821B1FI2 soloninko_andrey 0.2895
3821B1PE1 afanasyev_aleksey 0.2909
3821B1FI3 ivanov_nikita 0.2909
3821B1FI2 zakharov_artem 0.2925
3821B1PE3 nedelin_dmitry 0.2938
3821B1FI3 durandin_vladimir 0.2939
3821B1FI3 kulagin_aleksandr 0.2940
3821B1FI1 shipitsin_alex 0.2946
3821B1FI2 petrov_maksim 0.2958
3821B1PE3 smirnov_pavel 0.2974
3821B1PE1 smirnov_leonid 0.2976
3821B1PE1 khodyrev_fedor 0.2990
3821B1PE1 pozdnyakov_vasya 0.3008
3821B1FI1 kashirin_alexander 0.3011
3821B1PE1 kirillov_maxim 0.3022
3821B1FI3 tyulkina_olga 0.3032
3821B1PE1 vanushkin_dmitry 0.3033
3821B1FI1 alexseev_danila 0.3053
3821B1PE1 saratova_marina 0.3071
3821B1FI3 vasilev_ivan 0.3080
3821B1PE2 vinokurov_ivan 0.3102
3821B1FI3 volodin_evgeniy 0.3165
3821B1FI2 kostin_artem 0.3194
3821B1PE1 smirnova_daria 0.3541
3821B1FI3 korableb_nikita 0.3918
3821B1PE2 zhatkin_vyacheslav 0.4074
3821B1PE2 savchuk_anton 0.4126
3821B1PE1 kriseev_mikhail 0.4140
3821B1FI3 korablev_nikita 0.4283
3821B1PE2 belan_vadim 0.4363
3821B1FI2 travin_maksim 0.4418
3821B1PE1 chuvashov_andrey 0.4581
3821B1PE1 morgachev_stepan 0.4985
3821B1FI2 kazantsev_evgeny 0.5064
3821B1FI1 bodrov_daniil TOO SLOW
3821B1FI1 bonyuk_peter BUILD FAILED

Tasks Done

3821B1FI1

Group Name Passed
3821B1FI1 akopyan_zal 9/9
3821B1FI1 alexseev_danila 9/9
3821B1FI1 balyasov_ivan 9/9
3821B1FI1 bodrov_daniil 8/9
3821B1FI1 bonyuk_peter 7/9
3821B1FI1 borovkov_sergey 9/9
3821B1FI1 kashirin_alexander 9/9
3821B1FI1 lysanova_julia 9/9
3821B1FI1 mirzakhmedov_alexander 9/9
3821B1FI1 shipitsin_alex 9/9
3821B1FI1 shmelev_ivan 9/9
3821B1FI1 veselov_ilya 8/9

3821B1FI2

Group Name Passed
3821B1FI2 kazantsev_evgeny 9/9
3821B1FI2 kostanyan_arsen 9/9
3821B1FI2 kostin_artem 9/9
3821B1FI2 nogin_denis 6/9
3821B1FI2 petrov_maksim 9/9
3821B1FI2 soloninko_andrey 9/9
3821B1FI2 travin_maksim 9/9
3821B1FI2 zakharov_artem 9/9

3821B1FI3

Group Name Passed
3821B1FI3 benduyzhko_tatiana 9/9
3821B1FI3 durandin_vladimir 9/9
3821B1FI3 ivanov_nikita 9/9
3821B1FI3 korableb_nikita 1/9
3821B1FI3 korablev_nikita 9/9
3821B1FI3 kulaev_zhenya 9/9
3821B1FI3 kulagin_aleksandr 9/9
3821B1FI3 kulikov_artem 9/9
3821B1FI3 kuznetsov_artyom 9/9
3821B1FI3 polozov_vladislav 9/9
3821B1FI3 prokofev_kirill 9/9
3821B1FI3 ryabkov_vladislav 9/9
3821B1FI3 sadikov_damir 9/9
3821B1FI3 safarov_nurlan 9/9
3821B1FI3 safronov_mikhail 8/9
3821B1FI3 sharapov_georgiy 9/9
3821B1FI3 simonyan_suren 9/9
3821B1FI3 tyulkina_olga 9/9
3821B1FI3 vasilev_ivan 9/9
3821B1FI3 vasliev_ivan 0/9
3821B1FI3 volodin_evgeniy 9/9

3821B1PE1

Group Name Passed
3821B1PE1 afanasyev_aleksey 9/9
3821B1PE1 chuvashov_andrey 9/9
3821B1PE1 kashin_stepan 9/9
3821B1PE1 khodyrev_fedor 9/9
3821B1PE1 khramov_ivan 9/9
3821B1PE1 kirillov_maxim 9/9
3821B1PE1 kiselev_igor 9/9
3821B1PE1 kriseev_mikhail 9/9
3821B1PE1 kudinov_nikita 9/9
3821B1PE1 moiseev_nikita 9/9
3821B1PE1 morgachev_stepan 9/9
3821B1PE1 podyachikh_mikhail 1/9
3821B1PE1 pozdnyakov_vasya 9/9
3821B1PE1 saratova_marina 9/9
3821B1PE1 savchuk_anton 1/9
3821B1PE1 smirnov_leonid 9/9
3821B1PE1 smirnova_daria 9/9
3821B1PE1 sokolova_daria 4/9
3821B1PE1 tushentsova_karina 7/9
3821B1PE1 vanushkin_dmitry 9/9
3821B1PE1 vinichuk_timofey 7/9
3821B1PE1 yurin_andrey 9/9

3821B1PE2

Group Name Passed
3821B1PE2 belan_vadim 9/9
3821B1PE2 derun_andrei 1/9
3821B1PE2 karagodin_andrey 9/9
3821B1PE2 savchuk_anton 8/9
3821B1PE2 vinokurov_ivan 8/9
3821B1PE2 zhatkin_vyacheslav 9/9

3821B1PE3

Group Name Passed
3821B1PE3 Kachalov_Mikhail 4/9
3821B1PE3 Kokin Ivan 1/9
3821B1PE3 Kokin_Ivan 3/9
3821B1PE3 Musaev_Ilgar 9/9
3821B1PE3 nedelin_dmitry 9/9
3821B1PE3 smirnov_pavel 9/9

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 59.0%
  • C++ 40.4%
  • Other 0.6%