Skip to content

LiKangyuLKY/limo_ros2

 
 

Repository files navigation

真机运行:Running on the Jetson Nano:

克隆仓库

# 创建本地工作目录 Create local workspace
mkdir -p ~/agx_workspace
cd ~/agx_workspace
# 克隆项目 Clone the project
git clone https://github.com/agilexrobotics/limo_ros2.git src
# 中国大陆用户加速下载(Provide accelerated downloads for users in Chinese Mainland) 
# git clone https://ghproxy.com/https://github.com/agilexrobotics/limo_ros2.git src

mv ~/agx_workspace/src/.devcontainer ~/agx_workspace

如果您需要 CUDA 环境,请移步 https://github.com/dusty-nv/jetson-containers 根据指导构建环境

配置环境

您有三种方式在ubuntu系统上配置能够支持limo_ros2代码运行的环境

本地部署

如果您希望在本地部署下载所有有关依赖,您可以尝试使用rosdep工具自动安装依赖,或者使用apt包管理工具依次安装所有的ros依赖文件

# 创建本地工作目录 Create local workspace
mkdir -p ~/agx_workspace
cd ~/agx_workspace
# 克隆项目 Clone the project
git clone https://github.com/agilexrobotics/limo_ros2.git src
# 中国大陆用户加速下载(Provide accelerated downloads for users in Chinese Mainland) 
# git clone https://ghproxy.com/https://github.com/agilexrobotics/limo_ros2.git src

# 安装必要支持库 Install essential packages
apt-get update \
    && apt-get install -y --no-install-recommends \	
    libusb-1.0-0 \
    udev \
    apt-transport-https \
    ca-certificates \
    curl \
    swig \
    software-properties-common \
    python3-pip


# 安装雷达驱动 Install ydlidar driver
git clone https://ghproxy.com/https://github.com/YDLIDAR/YDLidar-SDK.git &&\
    mkdir -p YDLidar-SDK/build && \
    cd YDLidar-SDK/build &&\
    cmake ..&&\
    make &&\
    make install &&\
    cd .. &&\
    pip install . &&\
    cd .. && rm -r YDLidar-SDK 

# 编译功能包 Compile limo_ros2 packages
cd ~/agx_workspace
catkin_make
source devel/setup.bash

dockerfile构建docker环境

如果您对docker的使用有一定的了解,代码仓库中已经包含了dockerfile,您可以运行docker build命令直接构建,当然我们更推荐使用我们编写的自动化脚本来完成整个过程:

【推荐】使用 VS Code remote 插件 连接到 limo,打开 ~/agx_workspace 后在菜单中选择 reopen in container [Recommend] Login the limo via VS Code remote plugin, open ~/agx_workspace.Then select reopen in container in the menu

运行自动配置脚本 Or running automatically setup script

cd ~/agx_workspace/src
chmod +x setup.sh
./docker_setup.sh

然后按照提示进行操作 Then follow the prompts

直接拉取docker镜像

我们还将所需的镜像打包上传到了dockerhub网站,您可以直接运行下面的命令:

docker pull lagrangeluo/limo_ros2:v1

当镜像拉取完毕后,查看镜像,如果列表中出现了镜像名称,则说明pull成功了

agilex@agilex-desktop:~$ docker image list
REPOSITORY                                                         TAG        IMAGE ID       CREATED          SIZE
lagrangeluo/limo_ros2                                              v1         224540b5b168   11 minutes ago   7.57GB

通过容器启动镜像:

docker run --network=host \
      -d
      -v=/dev:/dev \
      --privileged \
      --device-cgroup-rule="a *:* rmw" \
      --volume=/tmp/.X11-unix:/tmp/.X11-unix \
      -v $XAUTH:$XAUTH -e XAUTHORITY=$XAUTH \
      --runtime nvidia
      --gpus=all \
      -w=/workspace \
      --name limo_dev \
      -e LIBGL_ALWAYS_SOFTWARE="1" \
      -e DISPLAY=${DISPLAY} \
      --restart=always \
      -v ~/agx_workspace:/home/limo_ros1_ws \
      lagrangeluo/limo_ros2:v1 \

当使用任意一种方式成功创建容器之后,便可以在容器环境下运行代码了。

导航 Navigation

rviz2
## 启动底盘 start the chassis
ros2 launch limo_bringup limo_start.launch.py
sleep 2

## 启动导航 start navigation
ros2 launch limo_bringup navigation2.launch.py

建图 start positioning

rviz2
ros2 launch limo_bringup limo_start.launch.py
ros2 launch build_map_2d revo_build_map_2d.launch.py
#上面三条指令启动之后,用遥控器控制车子行走 After the above three command are activated use a separate screen to control the car

键盘控制 keyboard control

ros2 launch limo_bringup limo_start.launch.py
ros2 run teleop_twist_keyboard teleop_twist_keyboard

仿真 Simulation

四轮差速模式 Four wheel differential mode

rviz2中显示模型 Display the model in rviz2

ros2 launch limo_description display_models_diff.launch.py 

gazebo中显示模型 Run the simulation in gazebo

ros2 launch limo_description gazebo_models_diff.launch.py 

启动键盘控制节点控制limo Start keyboard teleop to control Limo

ros2 run teleop_twist_keyboard teleop_twist_keyboard

阿克曼模式 Ackermann Model

开发中 In development

About

limo ros2 packages

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 56.7%
  • C++ 33.2%
  • CMake 4.7%
  • Shell 3.1%
  • Lua 1.3%
  • Dockerfile 1.0%