Skip to content

LLBF/Proyecto_libreria_DS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LIBRERÍA DE LA CLASE DE LA CLASE DE DATA SCIENCE DE THE BRIDGE, GRUPO DE SEPTIEMBRE 2022 MODALIDAD FULL TIME

Esta librería incluye funciones de limpieza, visualización y machine learning

Limpieza

read_it(url) google_img(path_api, urls, directory_names, directory_path) dif_encoder(x, y) splityear(x) simbolcleaner(x) too_many_nans(df, threshold=0, clean=True) num_processor(df, chars1=','', chars2='@'€%"$') mueve_imagenes(carpeta_fuente, carpeta_train, carpeta_test, n_max=500, split=0.2) read_data(path, im_size, class_names) edad(df, columna) igualar_strings(df, columna, string_deseado) outliers(df, columna) porcentaje(columna) trimestre(df, string_columna) deteccion_outliers(data, features) lista_de_listas(lista) ratio_nulos(data, features)

Visualización

visualize_data(x, y) s_temporal(df, a, y) comparacion_stemporal(train, test, prediction, lower_series, upper_series) candle_plot(df) grafica_creator(df) grid_creator(data, x, y, hue) Line_Line_bar_party(x, y, y1, label_x="x", label_y="y", label_y1="y1", plotsize=(20, 12), barcolor="grey", linecolor_y="green" linecolor_y1="b") balanced_target(X_train, y_train) feature_importances_visualization(best_estimator, X_train, plotsize=(20, 10)) matrices_comparadas(y, x_test_scaled, y_test, nombre_modelo, y_2, x_test_scaled_2, y_test_2, nombre_modelo_2, size) plot_matriz_confusion(y, x_test_scaled, y_test, nombre_modelo, size) piechart_etiquetado(data, size) test_transformers(df, cols) report_plot(tree_entrenado, X_test, y_test, columnas_X) bar_plot(df, columna) mapa_folium(df, geojson, key, coord, legend="Mapa") vis_line(df, ejex, ejey, group="", type=0) matrix_sca (df, dimensiones, agrupar, titulo="Scatter Matrix") pca_visualization(df)

Machine Learning

my_pca(n_components, df) my_kmeans(n_clusters, df) anomalias_var(feature) FeatureImportance_rf(X, y, n) FeatureSelection_var(X, min_var) Impute_Tree_Regressor(df: pd.core.frame.DataFrame, n_max_depth: int, random_state: int) Impute_Tree_classifier(df: pd.core.frame.DataFrame, categorical_variable: str, n_max_depth: int, random_state: int) relative_absolute_error(y_train: pd.core.series.Series, y_test: pd.core.series.Series, y_predicted: pd.core.series.Series, type_metric='error') specificity(y_true, y_pred) classifier_cat(dataf) cat_to_num(dataf) ver_balance(target) under(X, y) over(X, y) sampling(X, y) gradBoosting(X_train, X_test, y_train, y_test) cal_cols(df, column, n=0) bi_ray(n, bi=[[1], [0]], num_loop=1) frame_maker(df, columns, up_array, num_loops=0, num_col=0, dict_decod={}, full_frame=pd.DataFrame([])) bi_hot_encoding(df, columns=None) get_clusters(X_train, cluster_fd=KNeighborsClassifier(), cluster_mk=DBSCAN()) model_dic(df_model, n=0, dic={}) class cluster_ensemble Dec_tree_clf(X, y) LogisticReg(X, y) RandomForest(X, y) pickleizer(nombre, modelo=None) DPRegressor(X: pd.DataFrame, y: pd.Series)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages