Python scripts performing object detection using the YOLOv7 model in ONNX.
Original image: https://www.flickr.com/photos/nicolelee/19041780
- The input images are directly resized to match the input size of the model. I skipped adding the pad to the input image, it might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.
- Check the requirements.txt file.
- For ONNX, if you have a NVIDIA GPU, then install the onnxruntime-gpu, otherwise use the onnxruntime library.
- Additionally, pafy and youtube-dl are required for youtube video inference.
git clone https://github.com/ibaiGorordo/ONNX-YOLOv7-Object-Detection.git
cd ONNX-YOLOv7-Object-Detection
pip install -r requirements.txt
For Nvidia GPU computers:
pip install onnxruntime-gpu
Otherwise:
pip install onnxruntime
pip install youtube_dl
pip install git+https://github.com/zizo-pro/pafy@b8976f22c19e4ab5515cacbfae0a3970370c102b
The original models were converted to different formats (including .onnx) by PINTO0309. Download the models from [his repository](https://github.com/PINTO0309/PINTO_model_zoo/tree/main/307_YOLOv7). For that, you can either run the download_single_batch.sh
or copy the google drive link inside that script in your browser to manually download the file. Then, extract and copy the downloaded onnx models (for example yolov7-tiny_480x640.onnx
) to your models directory, and fix the file name in the python scripts accordingly.
- The License of the models is GPL-3.0 license: License
The original YOLOv7 model can be found in this repository: YOLOv7 Repository
- For Darknet style model, check the darknet branch
- For YOLOv5 compatible model, check the u5 branch
- Image inference:
python image_object_detection.py
- Webcam inference:
python webcam_object_detection.py
- Video inference: https://youtu.be/yYo0XQp97vo
python video_object_detection.py
Original video: https://youtu.be/zPre8MgmcHY
- Comparison with YOLOv5 or YOLOv6: https://youtu.be/WSFmLMLIbDQ
python comparison_with_yolov5_v6.py
Original video: https://youtu.be/zPre8MgmcHY
- Replace the
yolov5_v6_path
with the actual path to the YOLOv5 or YOLOv6 model. - Convert YOLOv5 model to ONNX
- Convert YOLOv6 model to ONNX
- YOLOv7 model: https://github.com/WongKinYiu/yolov7
- Paper: https://arxiv.org/abs/2207.02696
- YOLOv6 model: https://github.com/WongKinYiu/yolov7
- YOLOv5 model: https://github.com/ultralytics/yolov5
- PINTO0309's model zoo: https://github.com/PINTO0309/PINTO_model_zoo
- PINTO0309's model conversion tool: https://github.com/PINTO0309/openvino2tensorflow