Skip to content

JNAIC/STRN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STRN

This repo is the official implementation for Structural Topology Refinement Network for Skeleton-Based Action Recognition.

Architecture of STRN

image

Prerequisites

  • Python >= 3.6

  • PyTorch >= 1.1.0

  • PyYAML, tqdm, tensorboardX

  • We provide the dependency file of our experimental environment, you can install all dependencies by creating a new anaconda virtual environment and running pip install -r requirements.txt

  • Run pip install -e torchlight

Data Preparation

Download datasets.

There are 3 datasets to download:

  • NTU RGB+D 60 Skeleton
  • NTU RGB+D 120 Skeleton
  • NW-UCLA

NTU RGB+D 60 and 120

  1. Request dataset here: https://rose1.ntu.edu.sg/dataset/actionRecognition
  2. Download the skeleton-only datasets:
    1. nturgbd_skeletons_s001_to_s017.zip (NTU RGB+D 60)
    2. nturgbd_skeletons_s018_to_s032.zip (NTU RGB+D 120)
    3. Extract above files to ./data/nturgbd_raw

NW-UCLA

  1. Download dataset from here
  2. Move all_sqe to ./data/NW-UCLA

Data Processing

Directory Structure

Put downloaded data into the following directory structure:

- data/
  - NW-UCLA/
    - all_sqe
      ... # raw data of NW-UCLA
  - ntu/
  - ntu120/
  - nturgbd_raw/
    - nturgb+d_skeletons/     # from `nturgbd_skeletons_s001_to_s017.zip`
      ...
    - nturgb+d_skeletons120/  # from `nturgbd_skeletons_s018_to_s032.zip`
      ...

Generating Data

  • Generate NTU RGB+D 60 or NTU RGB+D 120 dataset:
 cd ./data/ntu # or cd ./data/ntu120
 # Get skeleton of each performer
 python get_raw_skes_data.py
 # Remove the bad skeleton 
 python get_raw_denoised_data.py
 # Transform the skeleton to the center of the first frame
 python seq_transformation.py

Training & Testing

Training

  • Change the config file depending on what you want.
# Example: training STRN on NTU RGB+D 120 cross subject with GPU 0
python main.py --config config/nturgbd120-cross-subject/default.yaml --work-dir work_dir/ntu120/csub/strn --device 0
  • To train model on NTU RGB+D 60/120 with bone or motion modalities, setting bone or vel arguments in the config file default.yaml or in the command line.
# Example: training STRN on NTU RGB+D 120 cross subject under bone modality
python main.py --config config/nturgbd120-cross-subject/default.yaml --train_feeder_args bone=True --test_feeder_args bone=True --work-dir work_dir/ntu120/csub/strn_bone --device 0
  • To train model on NW-UCLA with bone or motion modalities, you need to modify data_path in train_feeder_args and test_feeder_args to "bone" or "motion" or "bone motion", and run
python main.py --config config/ucla/default.yaml --work-dir work_dir/ucla/strn_xxx --device 0
  • To train your own model, put model file your_model.py under ./model and run:
# Example: training your own model on NTU RGB+D 120 cross subject
python main.py --config config/nturgbd120-cross-subject/default.yaml --model model.your_model.Model --work-dir work_dir/ntu120/csub/your_model --device 0

Acknowledgements

This repo is based on CTR-GCN. The data processing is borrowed from SGN and HCN.

Thanks to the original authors for their work!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages