Skip to content

JMFaundez/nek5000_NS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 

Repository files navigation

Momentum equation in Nek5000

Nek routines to compute the different terms in the momentum equation in strong and weak formulation.

NS

$$ \begin{align} \frac{\partial u_i}{\partial t} &= -\frac{\partial p}{\partial x_i} + \frac{1}{Re}\Delta u_i + f_i\ - u_j \frac{\partial u_i}{\partial x_j}\\ \frac{\partial u_i}{\partial x_i}&=0 \end{align} $$

Semi-discrete NS in Nek5000

$$ \begin{align} \mathbf{M}\frac{\partial u_i}{\partial t} &= \mathbf{D}_i^T p - \frac{1}{Re}\mathbf{K}u_i + \mathbf{M}f_i\ - \mathbf{C}u_i\\ \mathbf{D}_i u_i&=0 \end{align} $$

  • $\mathbf{C}$: Convection operator
  • $\mathbf{M}$: Mass matrix
  • $\mathbf{K}$: Stiffness matrix
  • $\frac{\partial u_i}{\partial t}$ : Computed using BDF2, considering current solution vx and two previous time steps vxlag. Then scaled by the mass matrix
  • $\mathbf{D}_i^T p$ : opgradt(px,py,pz,pr) (in navier1.f) where pr is defined in the pressure mesh and the outpouts px, py and pz are defined in the velocity mesh.
  • $\mathbf{K} u_i$ : wlaplacian(lapu,u,diff,1) (in navier1.f)
  • $M f_i$ : makeuf will call user defined forces and put them in BFX, BFY and BFZ
  • The convective term is computed in nek as: convop(convu,u_i) and then scaled by the mass matrix (check advab routine in navier1.f)

Time integration: Fractional step method

$$ \begin{align} \mathbf{H}u_{i}^&=\mathbf{D}_{i}^Tp^{n} + h_i^{n+1}\ \frac{b_0}{\Delta t}\mathbf{D}i\mathbf{M}^{-1}\mathbf{D}{i}^T(p^{n+1}-p^{n})&= \mathbf{D}_i u_i^\ u_{i}^{n+1} &= u_i^* + \frac{\Delta t}{b_0}\mathbf{M}^{-1}\mathbf{D}_{i}^T(p^{n+1}-p^{n}) \end{align} $$

  • Helmoltz operator: $\mathbf{H}= \frac{b_0}{\Delta t}\mathbf{M} + \frac{1}{Re}\mathbf{K}$
  • $h_i^{n+1}=-\sum_{j=1}^k\frac{b_j}{\Delta t} \mathbf{M}u_i^{n+1-j} - \sum_{j=1}^k a_j\mathbf{C}u_i^{n+1-j} + \mathbf{M}f_i^n$

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published