forked from recodehive/machine-learning-repos
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request recodehive#1265 from J-B-Mugundh/file-locking
Added File Locking Mechanism
- Loading branch information
Showing
9 changed files
with
26,255 additions
and
0 deletions.
There are no files selected for viewing
182 changes: 182 additions & 0 deletions
182
OpenCV Projects/File-Locking-Mechanism/Face_Recognition_Script/Face recognition.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
import cv2 | ||
import os | ||
import sys | ||
import numpy as np | ||
import FaceDetection | ||
import warnings | ||
from os import system | ||
import os | ||
warnings.filterwarnings("ignore") | ||
faces=[] | ||
labels=[] | ||
names={} | ||
dirpath = os.getcwd() | ||
training_folder = dirpath+"\\Face_Recognition_Script\\training-data" | ||
|
||
def newUser(): | ||
name = input("Enter Your Name: ") | ||
dirs = os.listdir(training_folder) | ||
os.makedirs(training_folder+'/'+name+'@'+str(len(dirs)+1)) | ||
cap = cv2.VideoCapture(0) | ||
i=0 | ||
while (True): | ||
ret, frame = cap.read() | ||
test = frame.copy() | ||
frame,frame_crop,rect = FaceDetection.detect_faces(FaceDetection.lbp_face_cascade,frame) | ||
cv2.imshow('Smile :) with different moods', frame) | ||
cv2.waitKey(50) | ||
if frame_crop!="None" and i<100: | ||
print(training_folder+"/" + name + '@' + str(len(dirs)+1) + '/' + str(i) + '.jpg') | ||
cv2.imwrite(training_folder+"/" + name + '@' + str(len(dirs)+1) + '/' + str(i) + '.jpg', frame_crop) | ||
#cv2.imwrite("sample.jpg",test) | ||
i+=1 | ||
elif i>=100: | ||
break | ||
|
||
cap.release() | ||
cv2.destroyAllWindows() | ||
|
||
|
||
|
||
def createLables(): | ||
dirs = os.listdir(training_folder) | ||
for users in dirs: | ||
lable = int(users[users.find("@")+1:len(users)]) | ||
names[lable] = users[0:users.find("@")] | ||
subfolders = training_folder + "/" + users | ||
imagesName = os.listdir(subfolders) | ||
for image in imagesName: | ||
imagePath = subfolders + "/" + image | ||
face = cv2.imread(imagePath) | ||
face = cv2.cvtColor(face,cv2.COLOR_BGR2GRAY) | ||
#cv2.imshow("Training on this image...",face) | ||
#cv2.waitKey(10) | ||
#cv2.destroyAllWindows() | ||
faces.append(face) | ||
labels.append(lable) | ||
#print("Labels: "+ str(labels)) | ||
#print("Total Number of Faces: "+str(len(faces))) | ||
#print(names) | ||
|
||
face_recognizer = object | ||
def trainDataLBPH(): | ||
# create our LBPH face recognizer | ||
#face_recognizer = cv2. | ||
global face_recognizer | ||
if len(labels)>0: | ||
face_recognizer = cv2.face.createLBPHFaceRecognizer() | ||
face_recognizer.train(faces, np.array(labels)) | ||
else: | ||
print("No train data is present. Add train data using -train flag.") | ||
sys.exit() | ||
def trainDataEigen(): | ||
# or use EigenFaceRecognizer by replacing above line with | ||
if len(labels)>0: | ||
face_recognizer = cv2.face.createEigenFaceRecognizer() | ||
face_recognizer.train(faces, np.array(labels)) | ||
else: | ||
print("No train data is present. Add train data using -train flag.") | ||
sys.exit() | ||
def trainDataFisher(): | ||
# or use FisherFaceRecognizer by replacing above line with | ||
if len(labels)>0: | ||
face_recognizer = cv2.face.createFisherFaceRecognizer() | ||
face_recognizer.train(faces, np.array(labels)) | ||
else: | ||
print("No train data is present. Add train data using -train flag.") | ||
sys.exit() | ||
|
||
|
||
def draw_rectangle(img, rect): | ||
(x, y, w, h) = rect | ||
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) | ||
def draw_text(img, text, x, y): | ||
cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2) | ||
|
||
|
||
def predict(test_img): | ||
img = test_img | ||
img, face, rect = FaceDetection.detect_faces(FaceDetection.haar_face_cascade,img,1.1) | ||
if face=="None": | ||
pass | ||
else: | ||
face = cv2.cvtColor(np.array(face,dtype=np.uint16),cv2.COLOR_BGR2GRAY) | ||
label,conf = face_recognizer.predict(np.array(face,dtype=np.uint16)) | ||
if label==-1: | ||
label_text = "unknown" | ||
else: | ||
label_text = names[label] | ||
draw_rectangle(img, rect) | ||
draw_text(img, label_text, rect[0], rect[1] - 5) | ||
|
||
return img | ||
|
||
def newUserTest(): | ||
cap = cv2.VideoCapture(0) | ||
os.system('cls') | ||
previous_label = "" | ||
while (True): | ||
ret, frame = cap.read() | ||
#test = frame.copy() | ||
frame,frame_crop,rect = FaceDetection.detect_faces(FaceDetection.haar_face_cascade,frame,1.1) | ||
if frame_crop == "None": | ||
pass | ||
else: | ||
|
||
frame_crop = cv2.cvtColor(np.array(frame_crop, dtype=np.uint16), cv2.COLOR_BGR2GRAY) | ||
label, conf = face_recognizer.predict(np.array(frame_crop, dtype=np.uint16)) | ||
if label == -1: | ||
label_text = "unknown" | ||
else: | ||
label_text = names[label] | ||
#label_text = names[label] | ||
# print(face) | ||
draw_rectangle(frame, rect) | ||
global pass_name | ||
if previous_label!=label_text: | ||
os.system('cls') | ||
previous_label = label_text | ||
print(label_text) | ||
if label_text==pass_name and pass_name!='': | ||
sys.exit() | ||
draw_text(frame, label_text, rect[0], rect[1] - 5) | ||
cv2.imshow('Smile :) with different moods', frame) | ||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
#cv2.imwrite("sample.jpg",test) | ||
break | ||
|
||
cap.release() | ||
cv2.destroyAllWindows() | ||
|
||
if __name__ == '__main__': | ||
if len(sys.argv)>1: | ||
if str(sys.argv[1]) == '-train': | ||
newUser() | ||
elif str(sys.argv[1]) == '-run': | ||
pass_name='' | ||
createLables() | ||
os.system('cls') | ||
trainDataLBPH() | ||
os.system('cls') | ||
newUserTest() | ||
else: | ||
pass_name = sys.argv[1] | ||
createLables() | ||
os.system('cls') | ||
trainDataLBPH() | ||
os.system('cls') | ||
newUserTest() | ||
else: | ||
createLables() | ||
os.system('cls') | ||
trainDataLBPH() | ||
os.system('cls') | ||
newUserTest() | ||
|
||
newUser() | ||
createLables() | ||
os.system('cls') | ||
trainDataLBPH() | ||
os.system('cls') | ||
newUserTest() | ||
|
76 changes: 76 additions & 0 deletions
76
OpenCV Projects/File-Locking-Mechanism/Face_Recognition_Script/FaceDetection.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
''' | ||
detectMultiScale(image, scaleFactor, minNeighbors): | ||
This is a general function to detect objects, in this case, it'll detect faces since we called in the face cascade. | ||
If it finds a face, it returns a list of positions of said face in the form “Rect(x,y,w,h).”, if not, then returns “None”. | ||
Image: | ||
The first input is the grayscale image. So make sure the image is in grayscale. | ||
scaleFactor: | ||
This function compensates a false perception in size that occurs when one face appears to be bigger than the other simply because it is closer to the camera. | ||
minNeighbors: | ||
This is a detection algorithm that uses a moving window to detect objects, | ||
it does so by defining how many objects are found near the current one before it can declare the face found. | ||
''' | ||
|
||
import cv2 | ||
|
||
haar_face_cascade = cv2.CascadeClassifier('E://PYTHON//Windows-Folder-Unlock-Using-Face-Recognition-master//Face_Recognition_Script//haarcascade_frontalface_alt.xml') | ||
lbp_face_cascade = cv2.CascadeClassifier('E://PYTHON//Windows-Folder-Unlock-Using-Face-Recognition-master//Face_Recognition_Script//lbpcascade_frontalface.xml') | ||
|
||
|
||
def detect_faces(f_cascade, colored_img, scaleFactor=1.1): | ||
img_copy = colored_img | ||
# convert the test image to gray image as opencv face detector expects gray images | ||
gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||
# let's detect multiscale (some i | ||
# mages may be closer to camera than others) images | ||
faces = f_cascade.detectMultiScale(gray, scaleFactor=scaleFactor, minNeighbors=5); | ||
# go over list of faces and draw them as rectangles on original colored img | ||
x=0 | ||
y=0 | ||
z=0 | ||
w = 0 | ||
if len(faces)==0: | ||
return img_copy,"None","None" | ||
for (x, y, w, h) in faces: | ||
cv2.rectangle(img_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) | ||
return img_copy,img_copy[y:y+w, x:x+h], faces[0] | ||
|
||
def staticFaceDetectHaar(img): | ||
test1 = cv2.imread(img) | ||
test1 = detect_faces(haar_face_cascade,test1) | ||
cv2.imshow('finanl',test1) | ||
cv2.waitKey(0) | ||
cv2.destroyAllWindows() | ||
|
||
def staticFaceDetectLbp(img): | ||
test1 = cv2.imread(img) | ||
test1 = detect_faces(lbp_face_cascade,test1) | ||
cv2.imshow('finanl',test1) | ||
cv2.waitKey(0) | ||
cv2.destroyAllWindows() | ||
|
||
def liveFaceDetectLbp(): | ||
cap = cv2.VideoCapture(0) | ||
while(True): | ||
ret, frame = cap.read() | ||
frame = detect_faces(lbp_face_cascade,frame,1.1) | ||
cv2.imshow("frame",frame) | ||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
cap.release() | ||
cv2.destroyAllWindows() | ||
|
||
def liveFaceDetectHaar(): | ||
cap = cv2.VideoCapture(0) | ||
while(True): | ||
ret, frame = cap.read() | ||
frame = detect_faces(haar_face_cascade,frame,1.1) | ||
cv2.imshow("frame",frame) | ||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
cap.release() | ||
cv2.destroyAllWindows() | ||
|
||
|
||
#liveFaceDetectHaar() | ||
#liveFaceDetectLbp() |
Binary file added
BIN
+4.53 KB
.../File-Locking-Mechanism/Face_Recognition_Script/__pycache__/FaceDetection.cpython-311.pyc
Binary file not shown.
Binary file added
BIN
+2.81 KB
...s/File-Locking-Mechanism/Face_Recognition_Script/__pycache__/FaceDetection.cpython-36.pyc
Binary file not shown.
Oops, something went wrong.