本次代码使用以下几种方法实现了二分类和三分类。其中二分类将分为normal类和abnormal类,三分类分为normal类、smurf类和其他类。包含的代码文件主要任务如下:
- 数据预处理:将字符型数据映射为离散型;
- 朴素贝叶斯、KNN、AdaBoost、SVM、XGBoost、Bagging、随机森林、决策树、DNN相关代码实现
代码功能为:
- utils.py:Preprocess data;
- 11_intrusion_detection.py:Classical methods for binary classification;
- 11_three_class.py:Classical methods for three classification;
- two_class_nn.py:Neural network for binary classification;
- three_class_nn.py:Neural network for three classification;
KDD CUP99数据集预处理(Python实现)
hr-gith/Intrusion-Detector
XLab-Tongji/KDD-CUP99-Modeling