Skip to content

HaloTrouvaille/MIR

Repository files navigation

Online Continual Learning with Maximally Interfered Retrieval (NeurIPS 2019)

Controlled sampling of memories for replay: retrieving the samples which are most interfered, i.e. whose prediction will be most negatively impacted by the foreseen parameters update.

(key) Requirements

  • Python 3.6.ssssss
  • Pytorch 1.1.0

pip install -r requirements.txt

Structure

├── Scripts 
    ├── ER_experiments.sh                # reproduces Experience Replay (ER) results        
    ├── ER_experiments_miniimagenet.sh   # reproduces ER results on MiniImagenet
    ├── gen_hparam_search.py             # Hyperparameter search for Generative Replay (GEN) 
    ├── gen_reproduce.py                 # reproduces GEN results 
    ├── hybrid_reproduce.sh              # reproduces Hybrid Replay (AE) results
├── VAE           
    ├── ....            # files for the VAE used in GEN
├── buffer.py           # Basic buffer implementation for ER and AE
├── data.py             # DataLoaders
├── er_main.py          # main file for ER
├── gen_main.py         # main file for GEN    
├── hybrid_main.py      # main file for AE
├── mir.py              # retrieval functions for ER, GEN and AE    
├── model.py            # defines the classifiers and the AutoEncoder in AE
├── utils.py

Running Experiments

  • ER = Experience Replay baseline
  • ER-MIR = Experience Replay + Maximally Interfered Retrieval
  • GEN = Generative Replay baseline
  • GEN-MIR = Generative Replay + Maximally Interfered Retrieval
  • AE = Hybrid Replay baseline
  • AE-MIR = Hybrid Replay + Maximally Interfered Retrieval

Experience Replay

ER baseline example:

python er_main.py --method rand_replay --dataset split_cifar10 --mem_size 50

ER-MIR example:

python er_main.py --method mir_replay --dataset split_cifar10 --mem_size 50

Reproduce:

sh Scripts/ER_experiments.sh

Generative Replay

GEN baseline example:

python gen_main.py --method rand_gen --gen_method rand_gen --samples_per_task 1000

GEN-MIR (MIR only on the classifier):

python gen_main.py --method mir_gen --gen_method rand_gen --samples_per_task 1000

GEN-MIR (MIR only on the generator):

python gen_main.py --method rand_gen --gen_method mir_gen --samples_per_task 1000

GEN-MIR:

python gen_main.py --method mir_gen --gen_method mir_gen --samples_per_task 1000

Hyper-parameter search:

python Scripts/gen_hparam_search.py

Reproduce:

python Scripts/gen_reproduce.py

Hybrid Replay

AE baseline example:

python hybrid_main.py --max_loss --mem_size 1000 --buffer_batch_size 100

AE-MIR example:

python hybrid_main.py --mem_size 1000 --buffer_batch_size 100

Reproduce:

sh Scripts/hybrid_reproduce.sh

Logging

Logging is done with Weights & Biases and can be turned on like this:
python <method>_main.py --log online

Acknowledgements

We would like to thank authors of the following repositories (from which we borrowed code) for making the code public.

Cite

@incollection{NIPS2019_9357,
title = {Online Continual Learning with Maximal Interfered Retrieval},
author = {Aljundi, Rahaf and Belilovsky, Eugene and Tuytelaars, Tinne and Charlin, Laurent and Caccia, Massimo and Lin, Min and Page-Caccia, Lucas},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {11849--11860},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/9357-online-continual-learning-with-maximal-interfered-retrieval.pdf}
}

Questions?

For general questions + GEN related questions, contact Massimo
For ER related questions, contact Eugene
For AE related questions, contact Lucas

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published