Skip to content

Graph-COM/Langevin_unlearning

Repository files navigation

Langevin_unlearning

This is the official implementation of the NeurIPS 2024 Spotlight paper

Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning

By Eli Chien, Haoyu Wang, Ziang Chen and Pan Li.

Please also check our NeurIPS 2024 paper

Certified Machine Unlearning via Noisy Stochastic Gradient Descent

Environment requirements

The code is runnable under the following enveironment:

matplotlib                      3.7.2
notebook                        7.0.7
numpy                           1.24.4
pandas                          2.0.3
scikit-learn                    1.3.0
scipy                           1.10.1
seaborn                         0.13.0
torch                           2.0.0+cu117
torchvision                     0.15.1+cu117
tqdm                            4.65.0

To implement and re-produce the result in Figure 3.a, run

python baseline.py --lam 1e-6 --dataset [MNIST/CIFAR10]
  • Notes: We have already calculated the lowest $\sigma$ w.r.t. target $\epsilon= [0.05, 0.1, 0.5, 1, 2, 5], k =[1,2,5]$ for MNIST and CIFAR10 (see line 285-298 in baseline.py). To calculate the lowest $\sigma$ w.r.t. an arbitrary $\epsilon, k$, one may run
python baseline.py --lam 1e-6 --dataset [MNIST/CIFAR10] --find_k 1

The command above could produce satisfying value of $\sigma$ when $k>1$, for $k=1$, one may further select more concise $\sigma$ value via further manual search via the try__() function (line499)

To implement and re-produce the result in Figure 3.b, run

python baseline.py --lam 1e-6 --dataset [MNIST/CIFAR10] --sequential2 1
python baseline_multiclass.py --lam 1e-6 --dataset [CIFAR10_MULTI] --sequential2 1

Note that CIFAR10_MULTI refers to multiple class classification.

To implement and re-produce the result in Figure 3.c, run

python main_lmc.py --lam 1e-6 --sigma 0.03 --dataset [MNIST/CIFAR10] --paint_unlearning_sigma 1
python main_lmc_multiclass.py --lam 1e-6 --sigma 0.03 --dataset CIFAR10_MULTI --paint_unlearning_sigma 1

To implement and re-produce the result in Figure 4, run

python main_lmc.py --lam 1e-6 --sigma 0.03 --dataset [MNIST] --paint_utility_epsilon 1

To implement and reproduce the result in Figure 5 (Appendix), run

python main_lmc.py --lam 1e-6 --sigma 0.03 --dataset [MNIST/CIFAR10] --paint_utility_s 1
python main_lmc_multiclass.py --lam 1e-6 --sigma 0.015 --dataset CIFAR10_MULTI --paint_utility_s 1

Note

  • use --gpu to allocate to a GPU device

  • /result/LMC saves the results we run and report in our paper.

Citation

If you find our work helpful, please cite us:

@article{chien2024langevin,
  title={Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning},
  author={Chien, Eli and Wang, Haoyu and Chen, Ziang and Li, Pan},
  journal={arXiv preprint arXiv:2401.10371},
  year={2024}
}