The goal of R.COVID.19 is to simply aquire data for the disease COVID 19 from sources that make the data readily available. No promises are made to the validaty of the data as their are many people at the sources working on that. Because these functions link to the sources, the data should update as the sources update. If data is not being generated, please open an issue so that I can look into the broken link. The sources for the data is listed below.
Finally, the John Hopkins data was transposed to be tidy, instead of having dates as columns in a wide dataset. The New York Times data was already in a tidy format. See GitPage site for information of other functions and sources of data.
GitPage Site: https://fredo-xvii.github.io/R.COVID.19/
You can install the released version of R.COVID.19 from CRAN with: (NOT ON CRAN)
install.packages("R.COVID.19")
And the development version from GitHub with:
install.packages("devtools")
devtools::install_github("Fredo-XVII/R.COVID.19")
Load libraries:
library(R.COVID.19)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(magrittr)
- source: GITHUB
Global COVID-19 Data:
confirmed <- R.COVID.19::global_confirmed_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> `Province/State` = col_character(),
#> `Country/Region` = col_character()
#> )
#> See spec(...) for full column specifications.
deaths <- R.COVID.19::global_deaths_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> `Province/State` = col_character(),
#> `Country/Region` = col_character()
#> )
#> See spec(...) for full column specifications.
recovered <- R.COVID.19::global_recovered_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> `Province/State` = col_character(),
#> `Country/Region` = col_character()
#> )
#> See spec(...) for full column specifications.
combo <- confirmed %>%
dplyr::left_join(deaths) %>%
dplyr::left_join(recovered) %>%
dplyr::mutate(mortality_rate = round((.$deaths_cases / .$confirmed_cases)*100,2))
#> Joining, by = c("Province/State", "Country/Region", "Lat", "Long", "greg_d")
#> Joining, by = c("Province/State", "Country/Region", "Lat", "Long", "greg_d")
knitr::kable(combo %>% dplyr::filter(`Country/Region` == "US") %>% tail(10), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = c("striped"))
Province/State |
Country/Region |
Lat |
Long |
greg_d |
confirmed_cases |
deaths_cases |
recovered_cases |
mortality_rate |
---|---|---|---|---|---|---|---|---|
NA |
US |
40 |
-100 |
2/24/21 |
28309085 |
506335 |
0 |
1.79 |
NA |
US |
40 |
-100 |
2/25/21 |
28386492 |
508673 |
0 |
1.79 |
NA |
US |
40 |
-100 |
2/26/21 |
28463190 |
510764 |
0 |
1.79 |
NA |
US |
40 |
-100 |
2/27/21 |
28527344 |
512252 |
0 |
1.80 |
NA |
US |
40 |
-100 |
2/28/21 |
28578548 |
513291 |
0 |
1.80 |
NA |
US |
40 |
-100 |
3/1/21 |
28637313 |
514810 |
0 |
1.80 |
NA |
US |
40 |
-100 |
3/2/21 |
28694071 |
516737 |
0 |
1.80 |
NA |
US |
40 |
-100 |
3/3/21 |
28759980 |
519205 |
0 |
1.81 |
NA |
US |
40 |
-100 |
3/4/21 |
28827755 |
521119 |
0 |
1.81 |
NA |
US |
40 |
-100 |
3/5/21 |
28894541 |
522877 |
0 |
1.81 |
US COVID-19 Data with Geographic Data:
us_confirmed <- R.COVID.19::us_geo_confirmed_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> iso2 = col_character(),
#> iso3 = col_character(),
#> Admin2 = col_character(),
#> Province_State = col_character(),
#> Country_Region = col_character(),
#> Combined_Key = col_character()
#> )
#> See spec(...) for full column specifications.
us_deaths <- R.COVID.19::us_geo_deaths_daily()
#> Parsed with column specification:
#> cols(
#> .default = col_double(),
#> iso2 = col_character(),
#> iso3 = col_character(),
#> Admin2 = col_character(),
#> Province_State = col_character(),
#> Country_Region = col_character(),
#> Combined_Key = col_character()
#> )
#> See spec(...) for full column specifications.
combo <- us_confirmed %>% dplyr::left_join(us_deaths) %>%
dplyr::mutate(mortality_rate = round((.$deaths_cases / .$confirmed_cases)*100,2))
#> Joining, by = c("UID", "iso2", "iso3", "code3", "FIPS", "Admin2", "Province_State", "Country_Region", "Lat", "Long_", "Combined_Key", "greg_d")
knitr::kable(combo %>%
dplyr::filter(Province_State == "New York", Admin2 == "New York") %>%
tail(5), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = c("striped"))
UID |
iso2 |
iso3 |
code3 |
FIPS |
Admin2 |
Province_State |
Country_Region |
Lat |
Long_ |
Combined_Key |
greg_d |
confirmed_cases |
Population |
deaths_cases |
mortality_rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
84036061 |
US |
USA |
840 |
36061 |
New York |
New York |
US |
40.76727 |
-73.97153 |
New York, New York, US |
3/1/21 |
103922 |
1628706 |
3906 |
3.76 |
84036061 |
US |
USA |
840 |
36061 |
New York |
New York |
US |
40.76727 |
-73.97153 |
New York, New York, US |
3/2/21 |
104444 |
1628706 |
3917 |
3.75 |
84036061 |
US |
USA |
840 |
36061 |
New York |
New York |
US |
40.76727 |
-73.97153 |
New York, New York, US |
3/3/21 |
104874 |
1628706 |
3940 |
3.76 |
84036061 |
US |
USA |
840 |
36061 |
New York |
New York |
US |
40.76727 |
-73.97153 |
New York, New York, US |
3/4/21 |
105491 |
1628706 |
3954 |
3.75 |
84036061 |
US |
USA |
840 |
36061 |
New York |
New York |
US |
40.76727 |
-73.97153 |
New York, New York, US |
3/5/21 |
106144 |
1628706 |
3964 |
3.73 |
- source: GITHUB
US COVID-19 County Data with Geographic Data:
us_co_cases <- R.COVID.19::us_counties_daily() %>%
dplyr::mutate(mortality_rate = round((.$deaths / .$cases)*100,2))
#> Parsed with column specification:
#> cols(
#> date = col_date(format = ""),
#> county = col_character(),
#> state = col_character(),
#> fips = col_character(),
#> cases = col_double(),
#> deaths = col_double()
#> )
knitr::kable(us_co_cases %>% dplyr::filter(state == "New York") %>% tail(10), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = "striped")
date |
county |
state |
fips |
cases |
deaths |
mortality_rate |
---|---|---|---|---|---|---|
2021-02-24 |
Yates |
New York |
36123 |
1011 |
26 |
2.57 |
2021-02-25 |
Yates |
New York |
36123 |
1011 |
26 |
2.57 |
2021-02-26 |
Yates |
New York |
36123 |
1011 |
26 |
2.57 |
2021-02-27 |
Yates |
New York |
36123 |
1014 |
26 |
2.56 |
2021-02-28 |
Yates |
New York |
36123 |
1014 |
26 |
2.56 |
2021-03-01 |
Yates |
New York |
36123 |
1014 |
26 |
2.56 |
2021-03-02 |
Yates |
New York |
36123 |
1015 |
26 |
2.56 |
2021-03-03 |
Yates |
New York |
36123 |
1015 |
26 |
2.56 |
2021-03-04 |
Yates |
New York |
36123 |
1017 |
26 |
2.56 |
2021-03-05 |
Yates |
New York |
36123 |
1022 |
26 |
2.54 |
US COVID-19 State Data with Geographic Data:
us_st_cases <- R.COVID.19::us_states_daily() %>%
dplyr::mutate(mortality_rate = round((.$deaths / .$cases)*100,2))
#> Parsed with column specification:
#> cols(
#> date = col_date(format = ""),
#> state = col_character(),
#> fips = col_character(),
#> cases = col_double(),
#> deaths = col_double()
#> )
knitr::kable(us_st_cases %>% dplyr::filter(state == "New York") %>% tail(10), format = "html") %>%
kableExtra::kable_styling(bootstrap_options = "striped")
date |
state |
fips |
cases |
deaths |
mortality_rate |
---|---|---|---|---|---|
2021-02-24 |
New York |
36 |
1611288 |
46680 |
2.90 |
2021-02-25 |
New York |
36 |
1620181 |
46790 |
2.89 |
2021-02-26 |
New York |
36 |
1628255 |
46914 |
2.88 |
2021-02-27 |
New York |
36 |
1636297 |
47025 |
2.87 |
2021-02-28 |
New York |
36 |
1644124 |
47143 |
2.87 |
2021-03-01 |
New York |
36 |
1650560 |
47247 |
2.86 |
2021-03-02 |
New York |
36 |
1656941 |
47345 |
2.86 |
2021-03-03 |
New York |
36 |
1663505 |
47464 |
2.85 |
2021-03-04 |
New York |
36 |
1670973 |
47565 |
2.85 |
2021-03-05 |
New York |
36 |
1679124 |
47672 |
2.84 |