forked from terrorizer1980/freqtrade
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add first version of new-strategy generation from template
- Loading branch information
Showing
4 changed files
with
351 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,306 @@ | ||
|
||
# --- Do not remove these libs --- | ||
from freqtrade.strategy.interface import IStrategy | ||
from pandas import DataFrame | ||
# -------------------------------- | ||
|
||
# Add your lib to import here | ||
import talib.abstract as ta | ||
import freqtrade.vendor.qtpylib.indicators as qtpylib | ||
import numpy # noqa | ||
|
||
|
||
# This class is a sample. Feel free to customize it. | ||
class {{ strategy }}(IStrategy): | ||
""" | ||
This is a strategy template to get you started.. | ||
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md | ||
|
||
You can: | ||
:return: a Dataframe with all mandatory indicators for the strategies | ||
- Rename the class name (Do not forget to update class_name) | ||
- Add any methods you want to build your strategy | ||
- Add any lib you need to build your strategy | ||
|
||
You must keep: | ||
- the lib in the section "Do not remove these libs" | ||
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend, | ||
populate_sell_trend, hyperopt_space, buy_strategy_generator | ||
""" | ||
# Strategy interface version - allow new iterations of the strategy interface. | ||
# Check the documentation or the Sample strategy to get the latest version. | ||
INTERFACE_VERSION = 2 | ||
|
||
# Minimal ROI designed for the strategy. | ||
# This attribute will be overridden if the config file contains "minimal_roi". | ||
minimal_roi = { | ||
"60": 0.01, | ||
"30": 0.02, | ||
"0": 0.04 | ||
} | ||
|
||
# Optimal stoploss designed for the strategy. | ||
# This attribute will be overridden if the config file contains "stoploss". | ||
stoploss = -0.10 | ||
|
||
# Trailing stoploss | ||
trailing_stop = False | ||
# trailing_stop_positive = 0.01 | ||
# trailing_stop_positive_offset = 0.0 # Disabled / not configured | ||
|
||
# Optimal ticker interval for the strategy. | ||
ticker_interval = '5m' | ||
|
||
# Run "populate_indicators()" only for new candle. | ||
process_only_new_candles = False | ||
|
||
# These values can be overridden in the "ask_strategy" section in the config. | ||
use_sell_signal = True | ||
sell_profit_only = False | ||
ignore_roi_if_buy_signal = False | ||
|
||
# Number of candles the strategy requires before producing valid signals | ||
startup_candle_count: int = 20 | ||
|
||
# Optional order type mapping. | ||
order_types = { | ||
'buy': 'limit', | ||
'sell': 'limit', | ||
'stoploss': 'market', | ||
'stoploss_on_exchange': False | ||
} | ||
|
||
# Optional order time in force. | ||
order_time_in_force = { | ||
'buy': 'gtc', | ||
'sell': 'gtc' | ||
} | ||
|
||
def informative_pairs(self): | ||
""" | ||
Define additional, informative pair/interval combinations to be cached from the exchange. | ||
These pair/interval combinations are non-tradeable, unless they are part | ||
of the whitelist as well. | ||
For more information, please consult the documentation | ||
:return: List of tuples in the format (pair, interval) | ||
Sample: return [("ETH/USDT", "5m"), | ||
("BTC/USDT", "15m"), | ||
] | ||
""" | ||
return [] | ||
|
||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||
""" | ||
Adds several different TA indicators to the given DataFrame | ||
|
||
Performance Note: For the best performance be frugal on the number of indicators | ||
you are using. Let uncomment only the indicator you are using in your strategies | ||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage. | ||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe() | ||
:param metadata: Additional information, like the currently traded pair | ||
:return: a Dataframe with all mandatory indicators for the strategies | ||
""" | ||
|
||
# Momentum Indicators | ||
# ------------------------------------ | ||
|
||
# RSI | ||
dataframe['rsi'] = ta.RSI(dataframe) | ||
|
||
""" | ||
# ADX | ||
dataframe['adx'] = ta.ADX(dataframe) | ||
|
||
# Awesome oscillator | ||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) | ||
|
||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100 | ||
dataframe['cci'] = ta.CCI(dataframe) | ||
|
||
# MACD | ||
macd = ta.MACD(dataframe) | ||
dataframe['macd'] = macd['macd'] | ||
dataframe['macdsignal'] = macd['macdsignal'] | ||
dataframe['macdhist'] = macd['macdhist'] | ||
|
||
# MFI | ||
dataframe['mfi'] = ta.MFI(dataframe) | ||
|
||
# Minus Directional Indicator / Movement | ||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe) | ||
dataframe['minus_di'] = ta.MINUS_DI(dataframe) | ||
|
||
# Plus Directional Indicator / Movement | ||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe) | ||
dataframe['plus_di'] = ta.PLUS_DI(dataframe) | ||
dataframe['minus_di'] = ta.MINUS_DI(dataframe) | ||
|
||
# ROC | ||
dataframe['roc'] = ta.ROC(dataframe) | ||
|
||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy) | ||
rsi = 0.1 * (dataframe['rsi'] - 50) | ||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1) | ||
|
||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy) | ||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) | ||
|
||
# Stoch | ||
stoch = ta.STOCH(dataframe) | ||
dataframe['slowd'] = stoch['slowd'] | ||
dataframe['slowk'] = stoch['slowk'] | ||
|
||
# Stoch fast | ||
stoch_fast = ta.STOCHF(dataframe) | ||
dataframe['fastd'] = stoch_fast['fastd'] | ||
dataframe['fastk'] = stoch_fast['fastk'] | ||
|
||
# Stoch RSI | ||
stoch_rsi = ta.STOCHRSI(dataframe) | ||
dataframe['fastd_rsi'] = stoch_rsi['fastd'] | ||
dataframe['fastk_rsi'] = stoch_rsi['fastk'] | ||
""" | ||
|
||
# Overlap Studies | ||
# ------------------------------------ | ||
|
||
# Bollinger bands | ||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) | ||
dataframe['bb_lowerband'] = bollinger['lower'] | ||
dataframe['bb_middleband'] = bollinger['mid'] | ||
dataframe['bb_upperband'] = bollinger['upper'] | ||
|
||
""" | ||
# EMA - Exponential Moving Average | ||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) | ||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) | ||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) | ||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) | ||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) | ||
|
||
# SAR Parabol | ||
dataframe['sar'] = ta.SAR(dataframe) | ||
|
||
# SMA - Simple Moving Average | ||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40) | ||
""" | ||
|
||
# TEMA - Triple Exponential Moving Average | ||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) | ||
|
||
# Cycle Indicator | ||
# ------------------------------------ | ||
# Hilbert Transform Indicator - SineWave | ||
hilbert = ta.HT_SINE(dataframe) | ||
dataframe['htsine'] = hilbert['sine'] | ||
dataframe['htleadsine'] = hilbert['leadsine'] | ||
|
||
# Pattern Recognition - Bullish candlestick patterns | ||
# ------------------------------------ | ||
""" | ||
# Hammer: values [0, 100] | ||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe) | ||
# Inverted Hammer: values [0, 100] | ||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe) | ||
# Dragonfly Doji: values [0, 100] | ||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe) | ||
# Piercing Line: values [0, 100] | ||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100] | ||
# Morningstar: values [0, 100] | ||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100] | ||
# Three White Soldiers: values [0, 100] | ||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100] | ||
""" | ||
|
||
# Pattern Recognition - Bearish candlestick patterns | ||
# ------------------------------------ | ||
""" | ||
# Hanging Man: values [0, 100] | ||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe) | ||
# Shooting Star: values [0, 100] | ||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe) | ||
# Gravestone Doji: values [0, 100] | ||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe) | ||
# Dark Cloud Cover: values [0, 100] | ||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe) | ||
# Evening Doji Star: values [0, 100] | ||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe) | ||
# Evening Star: values [0, 100] | ||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe) | ||
""" | ||
|
||
# Pattern Recognition - Bullish/Bearish candlestick patterns | ||
# ------------------------------------ | ||
""" | ||
# Three Line Strike: values [0, -100, 100] | ||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe) | ||
# Spinning Top: values [0, -100, 100] | ||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100] | ||
# Engulfing: values [0, -100, 100] | ||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100] | ||
# Harami: values [0, -100, 100] | ||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100] | ||
# Three Outside Up/Down: values [0, -100, 100] | ||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100] | ||
# Three Inside Up/Down: values [0, -100, 100] | ||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100] | ||
""" | ||
|
||
# Chart type | ||
# ------------------------------------ | ||
""" | ||
# Heikinashi stategy | ||
heikinashi = qtpylib.heikinashi(dataframe) | ||
dataframe['ha_open'] = heikinashi['open'] | ||
dataframe['ha_close'] = heikinashi['close'] | ||
dataframe['ha_high'] = heikinashi['high'] | ||
dataframe['ha_low'] = heikinashi['low'] | ||
""" | ||
|
||
# Retrieve best bid and best ask from the orderbook | ||
# ------------------------------------ | ||
""" | ||
# first check if dataprovider is available | ||
if self.dp: | ||
if self.dp.runmode in ('live', 'dry_run'): | ||
ob = self.dp.orderbook(metadata['pair'], 1) | ||
dataframe['best_bid'] = ob['bids'][0][0] | ||
dataframe['best_ask'] = ob['asks'][0][0] | ||
""" | ||
|
||
return dataframe | ||
|
||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||
""" | ||
Based on TA indicators, populates the buy signal for the given dataframe | ||
:param dataframe: DataFrame populated with indicators | ||
:param metadata: Additional information, like the currently traded pair | ||
:return: DataFrame with buy column | ||
""" | ||
dataframe.loc[ | ||
( | ||
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30 | ||
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle | ||
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising | ||
(dataframe['volume'] > 0) # Make sure Volume is not 0 | ||
), | ||
'buy'] = 1 | ||
|
||
return dataframe | ||
|
||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||
""" | ||
Based on TA indicators, populates the sell signal for the given dataframe | ||
:param dataframe: DataFrame populated with indicators | ||
:param metadata: Additional information, like the currently traded pair | ||
:return: DataFrame with buy column | ||
""" | ||
dataframe.loc[ | ||
( | ||
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70 | ||
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle | ||
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling | ||
(dataframe['volume'] > 0) # Make sure Volume is not 0 | ||
), | ||
'sell'] = 1 | ||
return dataframe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters