Skip to content

Commit

Permalink
Add first version of new-strategy generation from template
Browse files Browse the repository at this point in the history
  • Loading branch information
xmatthias committed Nov 21, 2019
1 parent 8cf8ab0 commit e3cf618
Show file tree
Hide file tree
Showing 4 changed files with 351 additions and 2 deletions.
11 changes: 10 additions & 1 deletion freqtrade/configuration/arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,8 @@

ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]

ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy"]

ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]

Expand All @@ -52,7 +54,7 @@
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"plot-dataframe", "plot-profit"]

NO_CONF_ALLOWED = ["create-userdir", "list-exchanges"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]


class Arguments:
Expand Down Expand Up @@ -117,6 +119,7 @@ def _build_subcommands(self) -> None:
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import (start_create_userdir, start_download_data,
start_list_exchanges, start_list_markets,
start_new_strategy,
start_list_timeframes, start_trading)
from freqtrade.plot.plot_utils import start_plot_dataframe, start_plot_profit

Expand Down Expand Up @@ -158,6 +161,12 @@ def _build_subcommands(self) -> None:
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)

# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
build_strategy_cmd.set_defaults(func=start_new_strategy)
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)

# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
Expand Down
13 changes: 13 additions & 0 deletions freqtrade/misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,3 +127,16 @@ def round_dict(d, n):

def plural(num, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's'


def render_template(template: str, arguments: dict):

from jinja2 import Environment, PackageLoader, select_autoescape

env = Environment(
loader=PackageLoader('freqtrade', 'templates'),
autoescape=select_autoescape(['html', 'xml'])
)
template = env.get_template(template)

return template.render(**arguments)
306 changes: 306 additions & 0 deletions freqtrade/templates/base_strategy.py.j2
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@

# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------

# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa


# This class is a sample. Feel free to customize it.
class {{ strategy }}(IStrategy):
"""
This is a strategy template to get you started..
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md

You can:
:return: a Dataframe with all mandatory indicators for the strategies
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy

You must keep:
- the lib in the section "Do not remove these libs"
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
populate_sell_trend, hyperopt_space, buy_strategy_generator
"""
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2

# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
"60": 0.01,
"30": 0.02,
"0": 0.04
}

# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -0.10

# Trailing stoploss
trailing_stop = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured

# Optimal ticker interval for the strategy.
ticker_interval = '5m'

# Run "populate_indicators()" only for new candle.
process_only_new_candles = False

# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False

# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20

# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}

# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}

def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []

def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame

Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""

# Momentum Indicators
# ------------------------------------

# RSI
dataframe['rsi'] = ta.RSI(dataframe)

"""
# ADX
dataframe['adx'] = ta.ADX(dataframe)

# Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

# Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe)

# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']

# MFI
dataframe['mfi'] = ta.MFI(dataframe)

# Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)

# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)

# ROC
dataframe['roc'] = ta.ROC(dataframe)

# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)

# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']

# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']

# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""

# Overlap Studies
# ------------------------------------

# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']

"""
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)

# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
"""

# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']

# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""

# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""

# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""

# Chart type
# ------------------------------------
"""
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
"""

# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
# first check if dataprovider is available
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""

return dataframe

def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1

return dataframe

def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
return dataframe
23 changes: 22 additions & 1 deletion freqtrade/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
refresh_backtest_trades_data)
from freqtrade.exchange import (available_exchanges, ccxt_exchanges, market_is_active,
symbol_is_pair)
from freqtrade.misc import plural
from freqtrade.misc import plural, render_template
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode

Expand Down Expand Up @@ -89,6 +89,27 @@ def start_create_userdir(args: Dict[str, Any]) -> None:
sys.exit(1)


def start_new_strategy(args: Dict[str, Any]) -> None:

config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)

if "strategy" in args and args["strategy"]:
new_path = config['user_data_dir'] / "strategies" / (args["strategy"] + ".py")

if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")

strategy_text = render_template(template='base_strategy.py.j2',
arguments={"strategy": args["strategy"]})

logger.info(f"Writing strategy to `{new_path}`.")
new_path.write_text(strategy_text)
else:
logger.warning("`new-strategy` requires --strategy to be set.")
sys.exit(1)


def start_download_data(args: Dict[str, Any]) -> None:
"""
Download data (former download_backtest_data.py script)
Expand Down

0 comments on commit e3cf618

Please sign in to comment.