Julia interface to the MAGEMin C package, which performs thermodynamic equilibrium calculations.
First install julia. We recommend downloading the official binary from the julia webpage.
Next, install the MAGEMin_C
package with:
]
pkg> add MAGEMin_C
You can check if it works on your system by running the build-in test suite:
pkg> test MAGEMin_C
By pushing backspace
you return from the package manager to the main julia terminal. This will download a compiled version of the library as well as some wrapper functions to your system.
Thermodynamic dataset acronym are the following:
mtl
-> mantle (Holland et al., 2013)mp
-> metapelite (White et al., 2014)mb
-> metabasite (Green et al., 2016)ig
-> igneous (Green et al., 2025 updated from and replacing Holland et al., 2018)igad
-> igneous alkaline dry (Weller et al., 2024)um
-> ultramafic (Evans & Frost, 2021)ume
-> ultramafic extended (Green et al., 2016 + Evans & Frost, 2021)
Several buffers can be used to fix the oxygen fugacity
qfm
qif
nno
hm
cco
Similarly activity can be fixed for the following oxides
aH2O
-> using water as reference phaseaO2
-> using dioxygen as reference phaseaMgO
-> using periclase as reference phaseaFeO
-> using ferropericlase as reference phaseaAl2O3
-> using corundum as reference phaseaTiO2
-> using rutile as reference phaseaSiO2
-> using quartz/coesite as reference phase
This is an example of how to use it for a predefined bulk rock composition:
using MAGEMin_C
db = "ig" # database: ig, igneous (Holland et al., 2018); mp, metapelite (White et al 2014b)
data = Initialize_MAGEMin(db, verbose=true);
test = 0 #KLB1
data = use_predefined_bulk_rock(data, test);
P = 8.0;
T = 800.0;
out = point_wise_minimization(P,T, data);
which gives
Status : 0
Mass residual : +5.34576e-06
Rank : 0
Point : 1
Temperature : +800.00000 [C]
Pressure : +8.00000 [kbar]
SOL = [G: -797.749] (25 iterations, 39.62 ms)
GAM = [-979.481432,-1774.104523,-795.261024,-673.747244,-375.070247,-917.557241,-829.990582,-1023.656703,-257.019268,-1308.294427]
Phase : spn cpx opx ol
Mode : 0.02799 0.14166 0.24228 0.58807
And here a case in which you specify your own bulk rock composition.
using MAGEMin_C
data = Initialize_MAGEMin("ig", verbose=false);
P,T = 10.0, 1100.0
Xoxides = ["SiO2"; "Al2O3"; "CaO"; "MgO"; "FeO"; "Fe2O3"; "K2O"; "Na2O"; "TiO2"; "Cr2O3"; "H2O"];
X = [48.43; 15.19; 11.57; 10.13; 6.65; 1.64; 0.59; 1.87; 0.68; 0.0; 3.0];
sys_in = "wt"
out = single_point_minimization(P, T, data, X=X, Xoxides=Xoxides, sys_in=sys_in)
which gives:
Pressure : 10.0 [kbar]
Temperature : 1100.0 [Celsius]
Stable phase | Fraction (mol fraction)
liq 0.75133
cpx 0.20987
opx 0.03877
Stable phase | Fraction (wt fraction)
liq 0.73001
cpx 0.22895
opx 0.04096
Gibbs free energy : -916.874646 (45 iterations; 86.53 ms)
Oxygen fugacity : 2.0509883251350577e-8
After the calculation is finished, the structure out
holds all the information about the stable assemblage, including seismic velocities, melt content, melt chemistry, densities etc.
You can show a full overview of that with
print_info(out)
If you are interested in the density or seismic velocity at the point, access it with
out.rho
2755.2995530913095
out.Vp
3.945646731595539
Once you are done with all calculations, release the memory with
Finalize_MAGEMin(data)
To suppress solution phases from the calculation, define a remove list rm_list
using the remove_phases()
function. In the latter, provide a vector of the solution phase(s) you want to remove and the database acronym as a second argument. Then pass the created rm_list
to the single_point_minimization()
function.
using MAGEMin_C
data = Initialize_MAGEMin("mp", verbose=-1, solver=0);
rm_list = remove_phases(["liq","sp"],"mp");
P,T = 10.713125, 1177.34375;
Xoxides = ["SiO2","Al2O3","CaO","MgO","FeO","K2O","Na2O","TiO2","O","MnO","H2O"];
X = [70.999,12.805,0.771,3.978,6.342,2.7895,1.481,0.758,0.72933,0.075,30.0];
sys_in = "mol";
out = single_point_minimization(P, T, data, X=X, Xoxides=Xoxides, sys_in=sys_in,rm_list=rm_list)
which gives:
Pressure : 10.713125 [kbar]
Temperature : 1177.3438 [Celsius]
Stable phase | Fraction (mol fraction)
fsp 0.29236
g 0.13786
ilmm 0.01526
q 0.22534
sill 0.10705
H2O 0.22213
Stable phase | Fraction (wt fraction)
fsp 0.34544
g 0.17761
ilmm 0.0261
q 0.25385
sill 0.12197
H2O 0.07503
Stable phase | Fraction (vol fraction)
fsp 0.31975
g 0.10873
ilmm 0.01307
q 0.23367
sill 0.08991
H2O 0.23487
Gibbs free energy : -920.021202 (25 iterations; 27.45 ms)
Oxygen fugacity : -5.4221261006295105
Delta QFM : 2.506745293747623
Note that if you want to suppress a single phase, you still need to define a vector to be passed to the remove_phases()
function, such as:
using MAGEMin_C
data = Initialize_MAGEMin("mp", verbose=-1, solver=0);
rm_list = remove_phases(["liq"],"mp");
P,T = 10.713125, 1177.34375;
Xoxides = ["SiO2","Al2O3","CaO","MgO","FeO","K2O","Na2O","TiO2","O","MnO","H2O"];
X = [70.999,12.805,0.771,3.978,6.342,2.7895,1.481,0.758,0.72933,0.075,30.0];
sys_in = "mol";
out = single_point_minimization(P, T, data, X=X, Xoxides=Xoxides, sys_in=sys_in,rm_list=rm_list)
which gives:
Pressure : 10.713125 [kbar]
Temperature : 1177.3438 [Celsius]
Stable phase | Fraction (mol fraction)
fsp 0.29337
g 0.12
sp 0.03036
q 0.23953
sill 0.08939
ru 0.00521
H2O 0.22213
Stable phase | Fraction (wt fraction)
fsp 0.34667
g 0.15368
sp 0.04514
q 0.26983
sill 0.10184
ru 0.00781
H2O 0.07503
Stable phase | Fraction (vol fraction)
fsp 0.31981
g 0.09422
sp 0.02492
q 0.24761
sill 0.07484
ru 0.00446
H2O 0.23413
Gibbs free energy : -920.00146 (19 iterations; 27.79 ms)
Oxygen fugacity : -5.760704474307317
Delta QFM : 2.1681669200698166
Here we need to initialize MAGEMin with the desired buffer (qfm in this case, see list at the beginning).
Note that O/Fe2O3 value needs to be large enough to saturate the system. Excess oxygen-content will be removed from the output
using MAGEMin_C
data = Initialize_MAGEMin("ig", verbose=false, buffer="qfm");
P,T = 10.0, 1100.0
Xoxides = ["SiO2","Al2O3","CaO","MgO","FeO","K2O","Na2O","TiO2","O","Cr2O3","H2O"];
X = [48.43; 15.19; 11.57; 10.13; 6.65; 1.64; 0.59; 1.87; 4.0; 0.1; 3.0];
sys_in = "wt"
out = single_point_minimization(P, T, data, X=X, Xoxides=Xoxides, sys_in=sys_in)
Buffer offset in the log10 scale can be applied as
using MAGEMin_C
data = Initialize_MAGEMin("ig", verbose=false, buffer="qfm");
P,T = 10.0, 1100.0
Xoxides = ["SiO2","Al2O3","CaO","MgO","FeO","K2O","Na2O","TiO2","O","Cr2O3","H2O"];
X = [48.43; 15.19; 11.57; 10.13; 6.65; 1.64; 0.59; 1.87; 4.0; 0.1; 3.0];
offset = -1.0
sys_in = "wt"
out = single_point_minimization(P, T, data, X=X, Xoxides=Xoxides, B=offset, sys_in=sys_in)
Like for oxygen buffer, activity buffer can be prescribe as follow
Note that the corresponding oxide-content needs to be large enough to saturate the system. Excess oxide-content will be removed from the output
using MAGEMin_C
data = Initialize_MAGEMin("ig", verbose=false, buffer="aTiO2");
P,T = 10.0, 700.0
Xoxides = ["SiO2","Al2O3","CaO","MgO","FeO","K2O","Na2O","TiO2","O","Cr2O3","H2O"];
X = [48.43; 15.19; 11.57; 10.13; 6.65; 1.64; 0.59; 4.0; 0.1; 0.1; 3.0];
value = 0.9
sys_in = "wt"
out = single_point_minimization(P, T, data, X=X, Xoxides=Xoxides, B=value, sys_in=sys_in)
using MAGEMin_C
db = "ig" # database: ig, igneous (Holland et al., 2018); mp, metapelite (White et al 2014b)
data = Initialize_MAGEMin(db, verbose=false);
test = 0 #KLB1
n = 1000
P = rand(8.0:40,n);
T = rand(800.0:2000.0, n);
out = multi_point_minimization(P,T, data, test=test);
Finalize_MAGEMin(data)
By default, this will show a progressbar (which you can deactivate with the progressbar=false
option).
You can also specify a custom bulk rock for all points (see above), or a custom bulk rock for every point.
The following example shows how to perform fractional crystallization using a hydrous basalt magma as a starting composition. The results are displayed using PlotlyJS. This example is provided in the hope it may be useful for learning how to use MAGEMin_C for more advanced applications.
Note that if we wanted to use a buffer, we would need to initialize MAGEMin as in example 4. Because during fractional crystallization the bulk-rock composition is updated at every step, we would need to increase the oxygen-content (O
) of the new bulk-rock
using MAGEMin_C
using PlotlyJS
# number of computational steps
nsteps = 64
# Starting/ending Temperature [°C]
T = range(1200.0,600.0,nsteps)
# Starting/ending Pressure [kbar]
P = range(3.0,0.1,nsteps)
# Starting composition [mol fraction], here we used an hydrous basalt; composition taken from Blatter et al., 2013 (01SB-872, Table 1), with added O and water saturated
oxides = ["SiO2"; "Al2O3"; "CaO"; "MgO"; "FeO"; "K2O"; "Na2O"; "TiO2"; "O"; "Cr2O3"; "H2O"]
bulk_0 = [38.448328757254195, 7.718376151972274, 8.254653357127351, 9.95911842561036, 5.97899305676308, 0.24079752710315697, 2.2556006776515964, 0.7244006013202644, 0.7233140004182841, 0.0, 12.696417444779453];
# Define bulk-rock composition unit
sys_in = "mol"
# Choose database
data = Initialize_MAGEMin("ig", verbose=false);
# allocate storage space
Out_XY = Vector{MAGEMin_C.gmin_struct{Float64, Int64}}(undef,nsteps)
melt_F = 1.0
bulk = copy(bulk_0)
np = 0
while melt_F > 0.0
np +=1
out = single_point_minimization(P[np], T[np], data, X=bulk, Xoxides=oxides, sys_in=sys_in)
Out_XY[np] = deepcopy(out)
# retrieve melt composition to use as starting composition for next iteration
melt_F = out.frac_M
bulk .= out.bulk_M
print("#$np P: $(round(P[np],digits=3)), T: $(round(T[np],digits=3))\n")
print(" ---------------------\n")
print(" melt_F: $(round(melt_F, digits=3))\n melt_composition: $(round.(bulk ,digits=3))\n\n")
end
ndata = np -1 # last point has melt fraction = 0
x = Vector{String}(undef,ndata)
melt_SiO2_anhydrous = Vector{Float64}(undef,ndata)
melt_FeO_anhydrous = Vector{Float64}(undef,ndata)
melt_H2O = Vector{Float64}(undef,ndata)
fluid_frac = Vector{Float64}(undef,ndata)
melt_density = Vector{Float64}(undef,ndata)
residual_density = Vector{Float64}(undef,ndata)
system_density = Vector{Float64}(undef,ndata)
for i=1:ndata
x[i] = "[$(round(P[i],digits=3)), $(round(T[i],digits=3))]"
melt_SiO2_anhydrous[i] = Out_XY[i].bulk_M[1] / (sum(Out_XY[i].bulk_M[1:end-1])) * 100.0
melt_FeO_anhydrous[i] = Out_XY[i].bulk_M[5] / (sum(Out_XY[i].bulk_M[1:end-1])) * 100.0
melt_H2O[i] = Out_XY[i].bulk_M[end] *100
fluid_frac[i] = Out_XY[i].frac_F*100
melt_density[i] = Out_XY[i].rho_M
residual_density[i] = Out_XY[i].rho_S
system_density[i] = Out_XY[i].rho
end
# section to plot composition evolution
trace1 = scatter( x = x,
y = melt_SiO2_anhydrous,
name = "Anyhdrous SiO₂ [mol%]",
line = attr( color = "firebrick",
width = 2) )
trace2 = scatter( x = x,
y = melt_FeO_anhydrous,
name = "Anyhdrous FeO [mol%]",
line = attr( color = "royalblue",
width = 2) )
trace3 = scatter( x = x,
y = melt_H2O,
name = "H₂O [mol%]",
line = attr( color = "cornflowerblue",
width = 2) )
trace4 = scatter( x = x,
y = fluid_frac,
name = "fluid [mol%]",
line = attr( color = "black",
width = 2) )
layout = Layout( title = "Melt composition",
xaxis_title = "PT [kbar, °C]",
yaxis_title = "Oxide [mol%]")
plot([trace1,trace2,trace3,trace4], layout)
# section to plot density evolution
trace1 = scatter( x = x,
y = melt_density,
name = "Melt density [kg/m³]",
line = attr( color = "gold",
width = 2) )
trace2 = scatter( x = x,
y = residual_density,
name = "Residual density [kg/m³]",
line = attr( color = "firebrick",
width = 2) )
trace3 = scatter( x = x,
y = system_density,
name = "System density[kg/m³]",
line = attr( color = "coral",
width = 2) )
layout = Layout( title = "Density evolution",
xaxis_title = "PT [kbar, °C]",
yaxis_title = "Density [kg/³]")
plot([trace1,trace2,trace3], layout)
in the previous examples the results of the minimization are saved in a structure called out
. To access all the information stored in the structure simply do:
out.
Then press tab
(tabulation key) to display all stored data:
out.
G_system Gamma MAGEMin_ver M_sys PP_vec P_kbar SS_vec T_C V Vp Vp_S Vs Vs_S X
aAl2O3 aFeO aH2O aMgO aSiO2 aTiO2 alpha bulk bulkMod bulkModulus_M bulkModulus_S bulk_F bulk_F_wt bulk_M
bulk_M_wt bulk_S bulk_S_wt bulk_res_norm bulk_wt cp dQFM dataset enthalpy entropy fO2 frac_F frac_F_wt frac_M
frac_M_wt frac_S frac_S_wt iter mSS_vec n_PP n_SS n_mSS oxides ph ph_frac ph_frac_vol ph_frac_wt ph_id
ph_type rho rho_F rho_M rho_S s_cp shearMod shearModulus_S status time_ms
In order to access any of these variables type for instance:
out.fO2
which will give you the oxygen fugacity:
out.fO2
-4.405735414252153
to access the list of stable phases and their fraction in mol
:
out.ph
4-element Vector{String}:
"liq"
"g"
"sp"
"ru"
out.ph_frac
4-element Vector{Float64}:
0.970482189810529
0.003792750364729876
0.020229088594267013
0.0054959712304740085
Chemical potential of the pure components (oxides) of the system is retrieved as:
out.Gamma
11-element Vector{Float64}:
-1017.3138187719679
-1847.7215909497188
-881.3605772634041
-720.5475835413267
-428.1896629304572
-1051.6248892195592
-1008.7336303031074
-1070.7332593397723
-228.07833391903714
-561.1937065530427
-440.764181608507
out.oxides
11-element Vector{String}:
"SiO2"
"Al2O3"
"CaO"
"MgO"
"FeO"
"K2O"
"Na2O"
"TiO2"
"O"
"MnO"
"H2O"
The composition in wt
of the first listed solution phase ("liq") can be accessed as
out.SS_vec[1].Comp_wt
11-element Vector{Float64}:
0.6174962747665693
0.1822124172602761
0.006265730986600257
0.0185105629478801
0.04555393290694774
0.038161590650707795
0.013329583423813463
0.0
0.0
0.0
0.07846990705720527
and the end-member fraction in wt
and their names as
out.SS_vec[1].emFrac_wt
8-element Vector{Float64}:
0.4608062343057727
0.0972375952287159
0.17818888101139307
0.02313962538195582
0.12734359573100587
0.025819902698522926
0.047571646835750894
0.03989251880688298
out.SS_vec[1].emNames
8-element Vector{String}:
"q4L"
"abL"
"kspL"
"anL"
"slL"
"fo2L"
"fa2L"
"h2oL"
Julia can be run in parallel using multi-threading. To take advantage of this, you need to start julia from the terminal with:
$julia -t auto
which will automatically use all threads on your machine. Alternatively, use julia -t 4
to start it on 4 threads.
If you are interested to see what you can do on your machine, type:
versioninfo()
Julia Version 1.9.0
Commit 8e630552924 (2023-05-07 11:25 UTC)
Platform Info:
OS: macOS (arm64-apple-darwin22.4.0)
CPU: 12 × Apple M2 Max
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.6 (ORCJIT, apple-m1)
Threads: 8 on 8 virtual cores
The function multi_point_minimization
will automatically utilize parallelization if you run it on >1 threads.