Skip to content

Commit

Permalink
Move readme to docs
Browse files Browse the repository at this point in the history
  • Loading branch information
Sbozzolo committed Dec 14, 2023
1 parent ea02024 commit 1eb683c
Show file tree
Hide file tree
Showing 7 changed files with 236 additions and 159 deletions.
158 changes: 3 additions & 155 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,165 +4,13 @@
<p align="center">
<strong>Analyzing and visualizing ClimaAtmos simulations</strong>
</p>
[![Test](https://github.com/Sbozzolo/ClimaAnalysis.jl/actions/workflows/ClimaAnalysis.yml/badge.svg)](https://github.com/Sbozzolo/ClimaAnalysis.jl/actions/workflows/ClimaAnalysis.yml)
[![Test](https://github.com/Sbozzolo/ClimaAnalysis.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/Sbozzolo/ClimaAnalysis.jl/actions/workflows/CI.yml)
[![Docs](https://github.com/Sbozzolo/ClimaAnalysis.jl/actions/workflows/Documentation.yml/badge.svg)](https://github.com/Sbozzolo/ClimaAnalysis.jl/actions/workflows/Documentation.yml)

`ClimaAnalysis.jl` is a Julia library to post-process and visualize `ClimaAtmos`
simulations.

## Quick start

### `SimDir`

Suppose you ran a `ClimaAtmos` simulation, and the output is saved in the folder
`simulation_output`. The first step in using `ClimaAnalysis` is to instantiate a
`SimDir`:
``` julia
import ClimaAnalysis

simdir = ClimaAnalysis.SimDir("simulation_output")
```
`ClimaAnalysis.SimDir` scans the `simulation_output`, finds all the output
files, and organizes them.

> [!NOTE]
> As of version `0.1.0`, `ClimaAnalysis` uses file names to identify files and
> variables. In this, `ClimaAnalysis` assumes that the default names for outputs
> are used in `ClimaAtmos` (i.e.,
> `<short_name>_<reduction_time>_<reduction_type>.nc`, as in `ta_1h_max.nc`, or
> `<short_name>_inst.nc`).
Once you have a `SimDir`, you can inspect the output. For example, to find what
variables are available:
``` julia-repl
julia> println(summary(simdir))
Output directory: simulation_output
Variables:
- va
average (2.0h)
- ua
average (6.0h)
- orog
inst
- ta
average (3.0h)
max (4.0h, 3.0h)
min (3.0h)
- ts
max (1.0h)
```
Now, you can access any given variable
``` julia-repl
ta_max = get(simdir; short_name = "t12", reduction = "max", period = "3.0h")
```
`ta_max` is a ` OutputVar`, a type that contains the variable as
well as some metadata.

Let us learn about ` OutputVar`s

### `OutputVar`

` OutputVar`s contain the raw data (in `.data`), the attributes read from the
file, and the information regarding the dimension over which the variable is
defined.
``` julia-repl
julia> ts_max.dims
OrderedCollections.OrderedDict{String, Vector{Float32}} with 4 entries:
"time" => [10800.0, 21600.0, 32400.0, 43200.0]
"lon" => [-180.0, -177.989, -175.978, -173.966, -171.955, -169.944, -167.933, -165.922…
"lat" => [-80.0, -77.9747, -75.9494, -73.924, -71.8987, -69.8734, -67.8481, -65.8228, …
"z" => [0.0, 5000.0, 10000.0, 15000.0, 20000.0, 25000.0, 30000.0, 35000.0, 40000.0, …
```
Here we have the dimensions and their values. The dimensions are ordered as in
the file, so that the first index of `.data` is `time`, and so on.

We can find the attributes of the dimensions in `.attributes`:
``` julia-repl
julia> ts_max.dim_attributes["lon"]
"lon" => Dict("units"=>"degrees_east")
```

Given an `OutputVar`, we can perform manipulations. For instance, we can take
the average over latitudes:
``` julia-repl
ts_max_lat_averaged = ClimaAnalysis.average_lat(ts_max)
```
Now,
``` julia-repl
ts_max_lat_averaged.dims =
OrderedCollections.OrderedDict{String, Vector{Float32}} with 3 entries:
"time" => [10800.0, 21600.0, 32400.0, 43200.0]
"lon" => [-180.0, -177.989, -175.978, -173.966, -171.955, -169.944, -167.933, -165.922…
"z" => [0.0, 5000.0, 10000.0, 15000.0, 20000.0, 25000.0, 30000.0, 35000.0, 40000.0, …
```
We can also take a time/altitude slice, for example, the plane with altitude closest to 8000 meters.
``` julia-repl
ts_max_lat_averaged_sliced = ClimaAnalysis.slice_z(ts_max_lat_averaged_sliced, 8_000)
```
Now,
``` julia-repl
ts_max_lat_averaged_sliced.dims =
OrderedCollections.OrderedDict{String, Vector{Float32}} with 2 entries:
"time" => [10800.0, 21600.0, 32400.0, 43200.0]
"lon" => [-180.0, -177.989, -175.978, -173.966, -171.955, -169.944, -167.933, -165.922…
```

We can directly visualize these quantities.

### `Visualize`

If `CairoMakie` is available, `ClimaAnalysis` can be used for plotting.
Importing `CairoMakie` and `ClimaAnalysis` in the same session automatically
loads the necessary `ClimaAnalysis` plotting modules.

If we want to make a heatmap for `ta_max` at time of 100 s at altitude `z` of 30000 meters:

``` julia
import CairoMakie
import ClimaAnalysis: Visualize

fig = CairoMakie.Figure(resolution = (400, 600))

viz.plot!(
fig,
ta_max,
time = 100.0,
z = 30_000.0
)

CairoMakie.save("ta_max.png", fig)
```

If we want to have a line plot, we can simply add another argument (e.g., `lat =
30`), to slice through that value.

If you want to customize some of the properties, you can pass the `plot_kwargs`
and `cb_kwargs` fields to the `plot!` function. For instance, to choose the
colormap for the colorbar to viridis

colormap = :viridis

``` julia
viz.plot!(
fig,
ta_max,
time = 100.0,
z = 30_000.0,
cb_kwargs = [:colormap => :viridis]
)
```
Note the `Symbol` in colormap!. `cb_kwargs` has to be a mapping of `Symbol`s and values. `ClimaAnalysis` has a convenience function `kwargs` to more easily pass down the
keyword arguments avoiding this step. With that, the above example becomes
``` julia
import ClimaAnalysis: Utils
viz.plot!(
fig,
ta_max,
time = 100.0,
z = 30_000.0,
plot_kwargs = Utils.kwargs(colormap = :inferno)
)
```
With `Utils.kwargs`, you can just pass the arguments as you would pass them to the constructor.
Check out the documentation for more information and tutorials.

## Features

Expand Down
1 change: 1 addition & 0 deletions docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
[deps]
ClimaAnalysis = "29b5916a-a76c-4e73-9657-3c8fd22e65e6"
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"

Expand Down
16 changes: 14 additions & 2 deletions docs/make.jl
Original file line number Diff line number Diff line change
@@ -1,16 +1,28 @@
using ClimaAnalysis
using Documenter
import CairoMakie

DocMeta.setdocmeta!(
ClimaAnalysis,
:DocTestSetup,
:(using ClimaAnalysis.Utils);
recursive = true,
)

makedocs(;
modules = [ClimaAnalysis],
modules = [
ClimaAnalysis,
Base.get_extension(ClimaAnalysis, :CairoMakieExt),
],
authors = "Climate Modelling Alliance",
repo = "https://github.com/Sbozzolo/ClimaAnalysis.jl",
sitename = "ClimaAnalysis.jl",
format = Documenter.HTML(;
prettyurls = get(ENV, "CI", "false") == "true",
canonical = "https://sbozzolo.github.io/ClimaAnalysis.jl",
),
pages = ["Home" => "index.md"],
checkdocs = :exports,
pages = ["Home" => "index.md", "APIs" => "api.md"],
)

deploydocs(; repo = "github.com/Sbozzolo/ClimaAnalysis.jl")
56 changes: 56 additions & 0 deletions docs/src/api.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# API

```@meta
CurrentModule = ClimaAnalysis
```

## SimDir

```@docs
SimDir
Base.get
available_vars
available_reductions
available_periods
```

## OutputVar

```@docs
OutputVar
read_var
slice_general
slice_x
slice_y
slice_z
slice_lon
slice_lat
slice_time
average_lat
average_lon
average_time
```


## Utilities

For development and not

```@docs
Utils.match_nc_filename
Utils.squeeze
Utils.nearest_index
Utils.kwargs
```

## CairoMakie

```@docs
Visualize.heatmap2D!
Visualize.sliced_heatmap!
Visualize.heatmap!
Visualize.line_plot1D!
Visualize.sliced_line_plot!
Visualize.sliced_plot!
Visualize.plot!
```
Loading

0 comments on commit 1eb683c

Please sign in to comment.