该项目是一个 Pytorch C++ and CUDA Extension,采用C++和Cuda实现了deformable-conv2d,modulated-deformable-conv2d,deformable-conv3d,modulated-deformable-conv3d的forward function和backward function,并在Python中对其进行了包装。
This Project is a Pytorch C++ and CUDA Extension, which implements the forward function and backward function for deformable-conv2d, modulated-deformable-conv2d, deformable-conv3d, modulated-deformable-conv3d, then encapsulates C++ and CUDA code into Python Package.
- run
pip install modulated-deform-conv
- or
git clone https://github.com/CHONSPQX/modulated-deform-conv.git
,thencd modulated-deform-conv
and runpython setup.py install
- Python 3
- Pytorch>=1.3
- Linux, gcc版本>=4.9(For Linux, gcc version>=4.9)
- Windows,CUDA版本需要VS版本兼容(For Windows, CUDA version must be compatiable with Visual Studio version)
由于资源有限,目前测试过的环境有(Because of limited resources, only the following environment are tested)
- Ubuntu18.04 , gcc 7.4 , CUDA 10.2 ,Python3.7.4, Pytorch 1.3.1
- Ubuntu18.04 , gcc 7.4 , CUDA 10.2 ,Python3.7.4, Pytorch 1.4.0
- Ubuntu18.04 , gcc 7.5 , CUDA 11.1 ,Python3.6.12, Pytorch 1.7.0
- Windows10 , Visual Studio 2017 , CUDA 10.1 ,Python3.7.6, Pytorch 1.4.0
- Windows10 , Visual Studio 2019 , CUDA 11.1 ,Python3.6.12, Pytorch 1.7.0
-
pip download modulated-deform-conv
解压得到的压缩文件,进入modulated-deform-conv
,打开src/config.h
,用户可根据自身显卡情况,设置以下两个变量,获得更快运行速度,然后运行python setup.py install
Unzip the downloaded compressed file,cd modulated-deform-conv
, then opensrc/config.h
,users are recommended to set the followingVARIABLES
to optimize run speed according to their NVIDIA GPU condition, then runpython setup.py install
const int CUDA_NUM_THREADS
const int MAX_GRID_NUM
-
运行时可以通过传递
in_step
参数来优化速度,该变量控制每次并行处理的batch 大小。
Or users can set differentin_step
value in run time, which controls the batch size of each parallel processing .
直接使用C++函数,请import MDCONV_CUDA
使用封装后的python类,请import modulated_deform_conv
Using C++ functions directly, please import MDCONV_CUDA
Using the packaged function by Python, please import modulated_deform_conv
- 文件 Files
Filename | Content |
---|---|
config.h |
macro&gloabl variables&inline functions |
deformable_conv.cu |
MDCONV_CUDA.deform_conv2d_forward_cuda MDCONV_CUDA.deform_conv2d_backward_cuda |
mdeformable_conv.cu |
MDCONV_CUDA.modulated_deform_conv2d_forward_cuda MDCONV_CUDA.modulated_deform_conv2d_backward_cuda |
deformable_conv3d.cu |
MDCONV_CUDA.deform_conv3d_forward_cuda MDCONV_CUDA.deform_conv3d_backward_cuda |
mdeformable_conv3d.cu |
MDCONV_CUDA.modulated_deform_conv3d_forward_cuda MDCONV_CUDA.modulated_deform_conv2d_backward_cuda |
utils.cu |
some code for display debug outputs |
warp.cpp |
glue code between C++ and Python |
- 变量 Variables
Variable Name | Type | Introduction |
---|---|---|
kernel_h |
const int |
first dimension size of the convolution kernel |
kernel_w |
const int |
second dimension size of the convolution kernel |
kernel_l |
const int |
third dimension size of the convolution kernel |
stride_h |
const int |
stride for first dimension |
stride_w |
const int |
stride for second dimension |
stride_l |
const int |
stride for third dimension |
pad_h |
const int |
zero padding for first dimension |
pad_w |
const int |
zero padding for second dimension |
pad_l |
const int |
zero padding for third dimension |
dilation_h |
const int |
dilation rate for first dimension |
dilation_w |
const int |
dilation rate for second dimension |
dilation_l |
const int |
dilation rate for third dimension |
group |
const int |
group of convolution |
deformable_group |
const int |
group of offset and mask |
in_step |
const int |
batch size of each parallel processing |
with_bias |
const bool |
if have bias |
input |
at::Tensor |
B,I,H,W[,L] ,I must be divisible bygroup and deformable_group |
grad_input |
at::Tensor |
grad_input must be size like input |
weight |
at::Tensor |
O,I/group,H,W[,L] ,O must be divisible bygroup |
grad_weight |
at::Tensor |
grad_weight must be size like weight |
bias |
at::Tensor |
[O] , if with_bias=true , bias must be non-null |
grad_bias |
at::Tensor |
grad_bias must be size like bias |
offset |
at::Tensor |
B,deformable_group*2*kernel_h*kernel_w,H,W B,deformable_group*3*kernel_h*kernel_w*kernel_l,H,W,L |
grad_offset |
at::Tensor |
grad_offset must be size like offset |
mask |
at::Tensor |
B,deformable_group*kernel_h*kernel_w,H,W B,deformable_group*kernel_h*kernel_w*kernel_l,H,W,L |
grad_mask |
at::Tensor |
grad_mask must be size like mask |
output |
at::Tensor |
B,O,OH,OW[,OL] |
grad_output |
at::Tensor |
grad_output must be size like output |
Class Name | Type |
---|---|
class DeformConv2dFunction |
torch.autograd.Function |
class ModulatedDeformConv2dFunction |
torch.autograd.Function |
class DeformConv3dFunction |
torch.autograd.Function |
class ModulatedDeformConv3dFunction |
torch.autograd.Function |
class DeformConv2d |
torch.nn.Module |
class ModulatedDeformConv2d |
torch.nn.Module |
class DeformConv3d |
torch.nn.Module |
class ModulatedDeformConv3d |
torch.nn.Module |
Xin Qiao [email protected]
Copyright (c) 2020 Xin Qiao Released under the MIT license