Skip to content

Nonlinear optimization course's project is about iterative methods due to finding an optimal point for a function in Rn.

Notifications You must be signed in to change notification settings

Baha2rM98/Nonlinear_Optimization_Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 

Repository files navigation

About

Pure implementation of Gradient Descent With Line Search and Newton Optimization algorithms in Python.

Requirements

  • Numpy

  • Sympy

pip install numpy
pip install sympy

How to run

Clone the project in a arbitrary directory, run main.py.

Important tips

  • Use Python operators inside your arbitrary function, for example use: a**b for power NOT a^b.
  • If you use mathematics functions inside your arbitrary function use Python math lib functions, for example use: exp(y) for exponential or acosh(), tan() etc for trigonometric functions.
  • If your arbitrary function contains functions like exp or sin DO NOT USE variables with names: e, x, p, s, i, n. In simpler term DO NOT define exp(x) or sin(s) , Instead define: exp(a) or sin(x).

Some example of valid functions:

(x - 4)**4 - (y - 3)**2 + (sin(z*x) * tanh(y**2.7182)) - 4*(z + 5)**4

0.3454663*y**2 + 30*x*y + 21.69*x**2 - 293.074*y

x**3 - 12*x*y + 8*y**3

atan(sinh(x**2 - 2*y))

1000*x**2 + 40*x*y + y**2

exp(a-b) + exp(b-a) + exp(a**2) + c**2

x**2 + 2*(y)**2

log(x) - (x - 4)**4 + -1*log(1 - x - y + x*y*z) + - 0.3454663*y**2 + (y - 3)**2 + (sin(z*x) * tanh(y**2.7182)) + 30*x*y - 4*(z + 5)**4 + log(y) + 21.69*x**2 - 293.074*y

-1*(x**3 - y**2) + 1.4142

-1*log(x**3 + x**2 - 5*x + 6)

x**3 - 6*x**2 + 4*x + 12

x**(1/x)

exp(a-b) + exp(b-a)

40.0708*x*y + 592.56*x**2 + 0.01*y**2 - 85.863*x

x**4 - 4*x*y + y**4

-1*log(1 - x - y) - log(x) - log(y)

sqrt(1 + x**2)

7*x - log(x)

-1*(x**2 + y**2) + 4

100*x**4 + 0.01*y**4

(1 - x)**2 + 100*(y - x**2)**2

sin(0.5*a**2 - 0.25*b**2 + 3) * cos(2*a + 1 - exp(b))

100*(y - x**2)**2 + (1 - x)**2

-1*(x**3 - y**2) + 1.4142

-1*log(x**3 + x**2 - 5*x + 6)

x**3 - 6*x**2 + 4*x + 12

x**(1/x)

sin(x) / x

About

Nonlinear optimization course's project is about iterative methods due to finding an optimal point for a function in Rn.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages