Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding logging capability in online eval #3698

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

"""Constants for the online evaluation context."""


class TelemetryConstants:
"""Telemetry Constants."""

APP_INSIGHT_HANDLER_NAME = "AppInsightsHandler"
NON_PII_MESSAGE = '[Hidden as it may contain PII]'


class ExceptionTypes:
"""AzureML Exception Types."""

User = "User"
System = "System"
Service = "Service"
Unclassified = "Unclassified"
All = {User, System, Service, Unclassified}
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
"""Main script for the evaluate context."""
import argparse
import json
import logging
import importlib
import sys
import shutil
Expand All @@ -20,8 +19,9 @@

from utils import get_mlclient, extract_model_info, is_input_data_empty

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from logging_utilities import get_logger

logger = get_logger(name=__name__)


def get_args():
Expand Down Expand Up @@ -162,7 +162,6 @@ def run_evaluation(command_line_args, evaluators, evaluator_configs):
final_results[evaluator_name].append(score_value)

final_results = pd.DataFrame(final_results)
logger.info(final_results)
final_results.to_json(command_line_args["evaluated_data"], orient="records", lines=True)
if results and results.get("rows"):
# Convert the results to a DataFrame
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

"""Logging utilities for the evaluator."""

from azure.ml.component.run import CoreRun
import platform

import logging

from constants import TelemetryConstants, ExceptionTypes


class DummyWorkspace:
"""Dummy Workspace class for offline logging."""

def __init__(self):
"""__init__."""
self.name = "local-ws"
self.subscription_id = ""
self.location = "local"
self.resource_group = ""


class DummyExperiment:
"""Dummy Experiment class for offline logging."""

def __init__(self):
"""__init__."""
self.name = "offline_default_experiment"
self.id = "1"
self.workspace = DummyWorkspace()


class TestRun:
"""Main class containing Current Run's details."""

def __init__(self):
"""__init__."""
self._run = CoreRun.get_context()
if not hasattr(self._run, 'experiment'):
self._experiment = DummyExperiment()
self._workspace = self._experiment.workspace
else:
self._experiment = self._run.experiment
self._workspace = self._experiment.workspace

@property
def run(self):
"""Azureml Run.

Returns:
_type_: _description_
"""
return self._run

@property
def experiment(self):
"""Azureml Experiment.

Returns:
_type_: _description_
"""
return self._experiment

@property
def workspace(self):
"""Azureml Workspace.

Returns:
_type_: _description_
"""
return self._workspace

@property
def compute(self):
"""Azureml compute instance.

Returns:
_type_: _description_
"""
if hasattr(self._run, 'experiment'):
target_name = self._run.get_details()["target"]
try:
if self.workspace.compute_targets.get(target_name):
return self.workspace.compute_targets[target_name].vm_size
else:
return "serverless"
except Exception:
return "Unknown"
return "local"

@property
def region(self):
"""Azure Region.

Returns:
_type_: _description_
"""
return self._workspace.location

@property
def subscription(self):
"""Azureml Subscription.

Returns:
_type_: _description_
"""
return self._workspace.subscription_id

@property
def parent_run(self):
"""Get Root run of the pipeline.

Returns:
_type_: _description_
"""
cur_run = self._run
if not hasattr(cur_run, 'experiment') or (cur_run.parent is None):
return self._run
if cur_run.parent is not None:
cur_run = cur_run.parent
return cur_run

@property
def root_run(self):
"""Get Root run of the pipeline.

Returns:
_type_: _description_
"""
cur_run = self._run
if not hasattr(cur_run, 'experiment') or (cur_run.parent is None):
return self._run
while cur_run.parent is not None:
cur_run = cur_run.parent
return cur_run

@property
def root_attribute(self):
"""Get Root attribute of the pipeline.

Returns:
_type_: str
"""
cur_run = self._run
if not hasattr(cur_run, 'experiment'):
return cur_run.id
cur_attribute = cur_run.name
first_parent = cur_run.parent
if first_parent is not None and hasattr(first_parent, "parent"):
second_parent = first_parent.parent
if second_parent is not None and hasattr(second_parent, "name"):
cur_attribute = second_parent.name
return cur_attribute


class CustomDimensions:
"""Custom Dimensions Class for App Insights."""

def __init__(self,
run_details,
app_name="online_eval",
component_version="0.0.1",
os_info=platform.system()) -> None:
"""__init__.

Args:
run_details (_type_, optional): _description_. Defaults to None.
app_name (_type_, optional): _description_. Defaults to TelemetryConstants.COMPONENT_NAME.
component_version : _description_. Defaults to TelemetryConstants.COMPONENT_DEFAULT_VERSION.
os_info (_type_, optional): _description_. Defaults to platform.system().
task_type (str, optional): _description_. Defaults to "".
"""
self.app_name = app_name
self.run_id = run_details.run.id
self.compute_target = run_details.compute
self.experiment_id = run_details.experiment.id
self.parent_run_id = run_details.parent_run.id
self.root_run_id = run_details.root_run.id
self.os_info = os_info
self.region = run_details.region
self.subscription_id = run_details.subscription
self.rootAttribution = run_details.root_attribute
self.moduleVersion = component_version


current_run = TestRun()
custom_dimensions = CustomDimensions(current_run)


class AppInsightsPIIStrippingFormatter(logging.Formatter):
"""Formatter for App Insights Logging.

Args:
logging (_type_): _description_
"""

def format(self, record: logging.LogRecord) -> str:
"""Format incoming log record.

Args:
record (logging.LogRecord): _description_

Returns:
str: _description_
"""
exception_tb = getattr(record, 'exception_tb_obj', None)
if exception_tb is None:
return super().format(record)

not_available_message = '[Not available]'

properties = getattr(record, 'properties', {})

message = properties.get('exception_message', TelemetryConstants.NON_PII_MESSAGE)
traceback_msg = properties.get('exception_traceback', not_available_message)

record.message = record.msg = '\n'.join([
'Type: {}'.format(properties.get('error_type', ExceptionTypes.Unclassified)),
'Class: {}'.format(properties.get('exception_class', not_available_message)),
'Message: {}'.format(message),
'Traceback: {}'.format(traceback_msg),
'ExceptionTarget: {}'.format(properties.get('exception_target', not_available_message)),
])
record.msg += " | Properties: {}"

# Update exception message and traceback in extra properties as well
properties['exception_message'] = message
record.properties = properties
record1 = super().format(record)
return record1


class CustomLogRecord(logging.LogRecord):
"""Custom Log Record class for App Insights."""

def __init__(self, *args, **kwargs):
"""__init__."""
super().__init__(*args, **kwargs)
self.properties = getattr(self, "properties", {})


# Step 2: Set the custom LogRecord factory
def custom_log_record_factory(*args, **kwargs):
"""Get CustomLogRecord for App Insights."""
return CustomLogRecord(*args, **kwargs)


def get_logger(logging_level: str = 'INFO',
custom_dimensions: dict = vars(custom_dimensions),
name: str = "online_eval"):
"""Get logger.

Args:
logging_level (str, optional): _description_. Defaults to 'DEBUG'.
custom_dimensions (dict, optional): _description_. Defaults to vars(custom_dimensions).
name (str, optional): _description_. Defaults to TelemetryConstants.LOGGER_NAME.

Raises:
ValueError: _description_

Returns:
_type_: _description_
"""
numeric_log_level = getattr(logging, logging_level.upper(), None)
if not isinstance(numeric_log_level, int):
raise ValueError('Invalid log level: %s' % logging_level)

logger = logging.getLogger(name)
logger.propagate = True
logger.setLevel(numeric_log_level)
logging.setLogRecordFactory(custom_log_record_factory)
handler_names = [handler.get_name() for handler in logger.handlers]
run_id = custom_dimensions["run_id"]

if TelemetryConstants.APP_INSIGHT_HANDLER_NAME not in handler_names:
try:
from azure.ai.ml._telemetry.logging_handler import AzureMLSDKLogHandler, INSTRUMENTATION_KEY
from azure.ai.ml._user_agent import USER_AGENT
custom_properties = {"PythonVersion": platform.python_version()}
custom_properties.update({"user_agent": USER_AGENT})
custom_properties.update(custom_dimensions)
appinsights_handler = AzureMLSDKLogHandler(
connection_string=f"InstrumentationKey={INSTRUMENTATION_KEY}",
custom_properties=custom_properties,
enable_telemetry=True
)
formatter = AppInsightsPIIStrippingFormatter(
fmt='%(asctime)s [{}] [{}] [%(module)s] %(funcName)s +%(lineno)s: %(levelname)-8s \
[%(process)d] %(message)s \n'.format("online_eval", run_id)
)
appinsights_handler.setFormatter(formatter)
appinsights_handler.setLevel(numeric_log_level)
appinsights_handler.set_name(TelemetryConstants.APP_INSIGHT_HANDLER_NAME)
logger.addHandler(appinsights_handler)
except Exception as e:
logger.warning(f"Failed to add App Insights handler: {e}")

return logger
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,9 @@
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
from utils import is_input_data_empty

import logging
from logging_utilities import get_logger

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger = get_logger(name=__name__)

DEFAULT_TRACE_ID_COLUMN = "operation_Id"
DEFAULT_SPAN_ID_COLUMN = "operation_ParentId"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,9 @@
from azure.monitor.query import LogsQueryStatus

from utils import get_app_insights_client
import logging
from logging_utilities import get_logger

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger = get_logger(name=__name__)


def get_args():
Expand Down Expand Up @@ -79,7 +78,6 @@ def save_output(result, args):
try:
# Todo: One conversation will be split across multiple rows. how to combine them?
logger.info(f"Saving output to {args['preprocessed_data']}")
logger.info(f"First few rows of output: {result.head()}")
result.to_json(args["preprocessed_data"], orient="records", lines=True)
except Exception as e:
logger.info("Unable to save output.")
Expand Down
Loading