Skip to content

Allows to modify on the fly some learned parameters (e.g., the learning rate, weight decay) when training a neural network in Torch.

License

Notifications You must be signed in to change notification settings

AlexMoreo/inntt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

inntt: Interactive NeuralNet Trainer for pyTorch

Finding the right hyperparameters when training deep learning models can be painful. The practitioner often ends up applying a trial/error approach to set them, based on the observation of some indicators (tr_loss, val_loss, etc.). Each little modification typically entails retraining from scratch. Interactive NeuralNet Trainer for pyTorch (INNTT) allows you to modify many parameters on the fly, interacting with the keyboard.

Some routines/features currently supported:

  • increase/decrease the learning rate (actually, any optimizer parameter such as the weight_decay, etc)
  • invoke the validation phase
  • quick-load/save the model: this allows you to safely experiment with different parameters (if something goes wrong, simply quick-load your model)
  • reboot the model parameters (useful when gradients explode and create nan parameters, or simply when you want to retrain from scratch but with the, say, lr, weight_decay, and drop_prob you have found to work best)
  • logging of the interactions

The inntt works currently only on the Linux's terminal; i'll fix that. I would also like to show some examples with growing-nets, this time controlled by the user.

About

Allows to modify on the fly some learned parameters (e.g., the learning rate, weight decay) when training a neural network in Torch.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages