-
Notifications
You must be signed in to change notification settings - Fork 22
/
.setup.py
executable file
·245 lines (205 loc) · 8.5 KB
/
.setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import fnmatch
import os
import re
import sys
from setuptools import find_packages, setup, Command
from setuptools.command.install import install as InstallCommandBase
from setuptools.dist import Distribution
# This version string is semver compatible, but incompatible with pip.
# For pip, we will remove all '-' characters from this string, and use the
# result for pip.
_VERSION = '1.8.0-rc1'
REQUIRED_PACKAGES = [
'absl-py >= 0.1.6',
'astor >= 0.6.0',
'gast >= 0.2.0',
'numpy >= 1.13.3',
'six >= 1.10.0',
'protobuf >= 3.4.0',
'tensorboard >= 1.7.0, < 1.8.0',
'termcolor >= 1.1.0',
]
if sys.byteorder == 'little':
# grpcio does not build correctly on big-endian machines due to lack of
# BoringSSL support.
# See https://github.com/tensorflow/tensorflow/issues/17882.
REQUIRED_PACKAGES.append('grpcio >= 1.8.6')
project_name = 'tensorflow'
if '--project_name' in sys.argv:
project_name_idx = sys.argv.index('--project_name')
project_name = sys.argv[project_name_idx + 1]
sys.argv.remove('--project_name')
sys.argv.pop(project_name_idx)
# python3 requires wheel 0.26
if sys.version_info.major == 3:
REQUIRED_PACKAGES.append('wheel >= 0.26')
else:
REQUIRED_PACKAGES.append('wheel')
# mock comes with unittest.mock for python3, need to install for python2
REQUIRED_PACKAGES.append('mock >= 2.0.0')
# tf-nightly should depend on tb-nightly
if 'tf_nightly' in project_name:
for i, pkg in enumerate(REQUIRED_PACKAGES):
if 'tensorboard' in pkg:
REQUIRED_PACKAGES[i] = 'tb-nightly >= 1.8.0a0, < 1.9.0a0'
break
# weakref.finalize and enum were introduced in Python 3.4
if sys.version_info < (3, 4):
REQUIRED_PACKAGES.append('backports.weakref >= 1.0rc1')
REQUIRED_PACKAGES.append('enum34 >= 1.1.6')
# pylint: disable=line-too-long
CONSOLE_SCRIPTS = [
'freeze_graph = tensorflow.python.tools.freeze_graph:run_main',
'toco_from_protos = tensorflow.contrib.lite.toco.python.toco_from_protos:main',
'toco = tensorflow.contrib.lite.toco.python.toco_wrapper:main',
'saved_model_cli = tensorflow.python.tools.saved_model_cli:main',
# We need to keep the TensorBoard command, even though the console script
# is now declared by the tensorboard pip package. If we remove the
# TensorBoard command, pip will inappropriately remove it during install,
# even though the command is not removed, just moved to a different wheel.
'tensorboard = tensorboard.main:run_main',
]
# pylint: enable=line-too-long
# remove the tensorboard console script if building tf_nightly
if 'tf_nightly' in project_name:
CONSOLE_SCRIPTS.remove('tensorboard = tensorboard.main:run_main')
TEST_PACKAGES = [
'scipy >= 0.15.1',
]
class BinaryDistribution(Distribution):
def has_ext_modules(self):
return True
class InstallCommand(InstallCommandBase):
"""Override the dir where the headers go."""
def finalize_options(self):
ret = InstallCommandBase.finalize_options(self)
self.install_headers = os.path.join(self.install_purelib,
'tensorflow', 'include')
return ret
class InstallHeaders(Command):
"""Override how headers are copied.
The install_headers that comes with setuptools copies all files to
the same directory. But we need the files to be in a specific directory
hierarchy for -I <include_dir> to work correctly.
"""
description = 'install C/C++ header files'
user_options = [('install-dir=', 'd',
'directory to install header files to'),
('force', 'f',
'force installation (overwrite existing files)'),
]
boolean_options = ['force']
def initialize_options(self):
self.install_dir = None
self.force = 0
self.outfiles = []
def finalize_options(self):
self.set_undefined_options('install',
('install_headers', 'install_dir'),
('force', 'force'))
def mkdir_and_copy_file(self, header):
install_dir = os.path.join(self.install_dir, os.path.dirname(header))
# Get rid of some extra intervening directories so we can have fewer
# directories for -I
install_dir = re.sub('/google/protobuf_archive/src', '', install_dir)
# Copy eigen code into tensorflow/include.
# A symlink would do, but the wheel file that gets created ignores
# symlink within the directory hierarchy.
# NOTE(keveman): Figure out how to customize bdist_wheel package so
# we can do the symlink.
if 'external/eigen_archive/' in install_dir:
extra_dir = install_dir.replace('external/eigen_archive', '')
if not os.path.exists(extra_dir):
self.mkpath(extra_dir)
self.copy_file(header, extra_dir)
if not os.path.exists(install_dir):
self.mkpath(install_dir)
return self.copy_file(header, install_dir)
def run(self):
hdrs = self.distribution.headers
if not hdrs:
return
self.mkpath(self.install_dir)
for header in hdrs:
(out, _) = self.mkdir_and_copy_file(header)
self.outfiles.append(out)
def get_inputs(self):
return self.distribution.headers or []
def get_outputs(self):
return self.outfiles
def find_files(pattern, root):
"""Return all the files matching pattern below root dir."""
for path, _, files in os.walk(root):
for filename in fnmatch.filter(files, pattern):
yield os.path.join(path, filename)
matches = ['../' + x for x in find_files('*', 'external') if '.py' not in x]
so_lib_paths = [
i for i in os.listdir('.')
if os.path.isdir(i) and fnmatch.fnmatch(i, '_solib_*')
]
for path in so_lib_paths:
matches.extend(
['../' + x for x in find_files('*', path) if '.py' not in x]
)
if os.name == 'nt':
EXTENSION_NAME = 'python/_pywrap_tensorflow_internal.pyd'
else:
EXTENSION_NAME = 'python/_pywrap_tensorflow_internal.so'
headers = (list(find_files('*.h', 'tensorflow/core')) +
list(find_files('*.h', 'tensorflow/stream_executor')) +
list(find_files('*.h', 'google/protobuf_archive/src')) +
list(find_files('*', 'third_party/eigen3')) +
list(find_files('*', 'external/eigen_archive')))
setup(
name=project_name,
version=_VERSION.replace('-', ''),
description="Unoffcial NVIDIA CUDA GPU support version of Google Tensorflow for MAC OSX 10.13\nFor more info, please check out my github page.\nI highly recommend you directly download and install it from my github's release.\nIf you insist on compiling it, you'd do it on a shell to debug.",
url='https://github.com/zylo117/tensorflow-gpu-macosx',
author='Carl Cheung',
author_email='[email protected]',
# Contained modules and scripts.
packages=find_packages(),
entry_points={
'console_scripts': CONSOLE_SCRIPTS,
},
headers=headers,
install_requires=REQUIRED_PACKAGES,
tests_require=REQUIRED_PACKAGES + TEST_PACKAGES,
# Add in any packaged data.
include_package_data=True,
package_data={
'tensorflow': [
EXTENSION_NAME,
] + matches,
},
zip_safe=False,
distclass=BinaryDistribution,
cmdclass={
'install_headers': InstallHeaders,
'install': InstallCommand,
},
# PyPI package information.
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
license='Apache 2.0',
keywords='tensorflow tensor machine learning', )