-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_Norm.py
524 lines (464 loc) · 24.6 KB
/
train_Norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import numpy as np
import random
import open3d
import torch
import json
import torch.nn as nn
import torch.optim as optim
import math
from emd import earth_mover_distance
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import DataLoader
import sklearn.metrics as metrics
import argparse
import copy
from data.dataloader_Norm import ScanNet, ModelNet, ShapeNet, label_to_idx, NUM_POINTS
from Models_Norm import PointNet, DGCNN
from utils import pc_utils_Norm, loss, log
import DefRec
import RotCls
import DefCls
import NormReg
import PCM
NWORKERS = 4
MAX_LOSS = 9 * (10 ** 9)
def str2bool(v):
"""
Input:
v - string
output:
True/False
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
# ==================
# Argparse
# ==================
parser = argparse.ArgumentParser(description='DA on Point Clouds')
parser.add_argument('--exp_name', type=str, default='GAST', help='Name of the experiment')
parser.add_argument('--out_path', type=str, default='./experiments', help='log folder path')
parser.add_argument('--dataroot', type=str, default='../DefRec_and_PCM-master/data', metavar='N', help='data path')
parser.add_argument('--src_dataset', type=str, default='shapenet', choices=['modelnet', 'shapenet', 'scannet'])
parser.add_argument('--trgt_dataset', type=str, default='scannet', choices=['modelnet', 'shapenet', 'scannet'])
parser.add_argument('--epochs', type=int, default=200, help='number of episode to train')
parser.add_argument('--model', type=str, default='dgcnn', choices=['pointnet', 'dgcnn'], help='Model to use')
parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)')
parser.add_argument('--gpus', type=lambda s: [int(item.strip()) for item in s.split(',')], default='0',
help='comma delimited of gpu ids to use. Use "-1" for cpu usage')
parser.add_argument('--DefRec_dist', type=str, default='volume_based_voxels', metavar='N',
choices=['volume_based_voxels', 'volume_based_radius'],
help='distortion of points')
parser.add_argument('--num_regions', type=int, default=3, help='number of regions to split shape by')
parser.add_argument('--DefRec_on_src', type=str2bool, default=False, help='Using DefRec in source')
parser.add_argument('--DefRec_on_trgt', type=str2bool, default=False, help='Using DefRec in target')
parser.add_argument('--DefCls_on_src', type=str2bool, default=True, help='Using DefCls in source')
parser.add_argument('--DefCls_on_trgt', type=str2bool, default=True, help='Using DefCls in target')
parser.add_argument('--RotCls_on_src', type=str2bool, default=False, help='Using RotCls in source')
parser.add_argument('--RotCls_on_trgt', type=str2bool, default=False, help='Using RotCls in target')
parser.add_argument('--NormReg_on_src', type=str2bool, default=False, help='Using NormReg in source')
parser.add_argument('--NormReg_on_trgt', type=str2bool, default=False, help='Using NormReg in target')
parser.add_argument('--Dec_on_src', type=str2bool, default=False, help='Using Decoder in source')
parser.add_argument('--Dec_on_trgt', type=str2bool, default=False, help='Using Decoder in target')
parser.add_argument('--apply_PCM', type=str2bool, default=False, help='Using mixup in source')
parser.add_argument('--apply_GRL', type=str2bool, default=False, help='Using gradient reverse layer')
parser.add_argument('--apply_SPL', type=str2bool, default=False, help='Using self-paced learning')
parser.add_argument('--batch_size', type=int, default=16, metavar='batch_size', help='Size of train batch per domain')
parser.add_argument('--test_batch_size', type=int, default=32, metavar='batch_size',
help='Size of test batch per domain')
parser.add_argument('--optimizer', type=str, default='ADAM', choices=['ADAM', 'SGD'])
parser.add_argument('--cls_weight', type=float, default=0.5, help='weight of the classification loss')
parser.add_argument('--grl_weight', type=float, default=0.5, help='weight of the GRL loss')
parser.add_argument('--spl_weight', type=float, default=0.5, help='weight of the SPL loss')
parser.add_argument('--DefRec_weight', type=float, default=0.5, help='weight of the DefRec loss')
parser.add_argument('--DefCls_weight', type=float, default=0.5, help='weight of the DefCls loss')
parser.add_argument('--RotCls_weight', type=float, default=0.2, help='weight of the RotCls loss')
parser.add_argument('--NormReg_weight', type=float, default=0.5, help='weight of the NormReg loss')
parser.add_argument('--Decoder_weight', type=float, default=2.0, help='weight of the Decoder loss')
parser.add_argument('--output_pts', type=int, default=512, help='number of decoder points')
parser.add_argument('--mixup_params', type=float, default=1.0, help='a,b in beta distribution')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum')
parser.add_argument('--wd', type=float, default=5e-5, help='weight decay')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
parser.add_argument('--gamma', type=float, default=0.1, help='threshold for pseudo label')
args = parser.parse_args()
# ==================
# init
# ==================
io = log.IOStream(args)
io.cprint(str(args))
random.seed(1)
# np.random.seed(1) # to get the same point choice in ModelNet and ScanNet leave it fixed
torch.manual_seed(args.seed)
args.cuda = (args.gpus[0] >= 0) and torch.cuda.is_available()
device = torch.device("cuda:" + str(args.gpus[0]) if args.cuda else "cpu")
if args.cuda:
io.cprint('Using GPUs ' + str(args.gpus) + ',' + ' from ' +
str(torch.cuda.device_count()) + ' devices available')
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
io.cprint('Using CPU')
# ==================
# Read Data
# ==================
def split_set(dataset, domain, set_type="source"):
"""
Input:
dataset
domain - modelnet/shapenet/scannet
type_set - source/target
output:
train_sampler, valid_sampler
"""
train_indices = dataset.train_ind
val_indices = dataset.val_ind
unique, counts = np.unique(dataset.label[train_indices], return_counts=True)
io.cprint("Occurrences count of classes in " + set_type + " " + domain +
" train part: " + str(dict(zip(unique, counts))))
unique, counts = np.unique(dataset.label[val_indices], return_counts=True)
io.cprint("Occurrences count of classes in " + set_type + " " + domain +
" validation part: " + str(dict(zip(unique, counts))))
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
return train_sampler, valid_sampler
src_dataset = args.src_dataset
trgt_dataset = args.trgt_dataset
data_func = {'modelnet': ModelNet, 'scannet': ScanNet, 'shapenet': ShapeNet}
src_trainset = data_func[src_dataset](io, args.dataroot, 'train')
trgt_trainset = data_func[trgt_dataset](io, args.dataroot, 'train')
trgt_testset = data_func[trgt_dataset](io, args.dataroot, 'test')
# Creating data indices for training and validation splits:
src_train_sampler, src_valid_sampler = split_set(src_trainset, src_dataset, "source")
trgt_train_sampler, trgt_valid_sampler = split_set(trgt_trainset, trgt_dataset, "target")
# dataloaders for source and target
src_train_loader = DataLoader(src_trainset, num_workers=NWORKERS, batch_size=args.batch_size,
sampler=src_train_sampler, drop_last=True)
src_val_loader = DataLoader(src_trainset, num_workers=NWORKERS, batch_size=args.test_batch_size,
sampler=src_valid_sampler)
trgt_train_loader = DataLoader(trgt_trainset, num_workers=NWORKERS, batch_size=args.batch_size,
sampler=trgt_train_sampler, drop_last=True)
trgt_val_loader = DataLoader(trgt_trainset, num_workers=NWORKERS, batch_size=args.test_batch_size,
sampler=trgt_valid_sampler)
trgt_test_loader = DataLoader(trgt_testset, num_workers=NWORKERS, batch_size=args.test_batch_size)
# ==================
# Init Model
# ==================
if args.model == 'pointnet':
model = PointNet(args)
elif args.model == 'dgcnn':
model = DGCNN(args)
else:
raise Exception("Not implemented")
model = model.to(device)
# Handle multi-gpu
if (device.type == 'cuda') and len(args.gpus) > 1:
model = nn.DataParallel(model, args.gpus)
best_model = copy.deepcopy(model)
# ==================
# Optimizer
# ==================
opt = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd) if args.optimizer == "SGD" \
else optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
scheduler = CosineAnnealingLR(opt, args.epochs - 10)
criterion = nn.CrossEntropyLoss() # return the mean of CE over the batch
criterion_ls = loss.LabelSmoothingCrossEntropy()
criterion_elem = nn.CrossEntropyLoss(reduction='none') # return the each sample CE over the batch
# lookup table of regions means
lookup = torch.Tensor(pc_utils_Norm.region_mean(args.num_regions)).to(device)
# ==================
# Validation/test
# ==================
def test(test_loader, model=None, set_type="Target", partition="Val", epoch=0):
# Run on cpu or gpu
count = 0.0
print_losses = {'cls': 0.0}
batch_idx = 0
with torch.no_grad():
model.eval()
test_pred = []
test_true = []
for data, labels, _ in test_loader:
data, labels = data.to(device), labels.to(device).squeeze()
data = data.permute(0, 2, 1)
batch_size = data.size()[0]
logits = model(data, activate_DefRec=False)
loss = criterion(logits["cls"], labels)
print_losses['cls'] += loss.item() * batch_size
# evaluation metrics
preds = logits["cls"].max(dim=1)[1]
test_true.append(labels.cpu().numpy())
test_pred.append(preds.detach().cpu().numpy())
count += batch_size
batch_idx += 1
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
print_losses = {k: v * 1.0 / count for (k, v) in print_losses.items()}
test_acc = io.print_progress(set_type, partition, epoch, print_losses, test_true, test_pred)
conf_mat = metrics.confusion_matrix(test_true, test_pred, labels=list(label_to_idx.values())).astype(int)
return test_acc, print_losses['cls'], conf_mat
# ==================
# Utils
# ==================
def generate_trgt_pseudo_label(trgt_data, logits, threshold):
batch_size = trgt_data.size(0)
pseudo_label = torch.zeros(batch_size, 10).long() # one-hot label
sfm = nn.Softmax(dim=1)
cls_conf = sfm(logits['cls'])
mask = torch.max(cls_conf, 1) # 2 * b
for i in range(batch_size):
index = mask[1][i]
if mask[0][i] > threshold:
pseudo_label[i][index] = 1
return pseudo_label
# ==================
# Train
# ==================
src_best_val_acc = trgt_best_val_acc = best_val_epoch = 0
src_best_val_loss = trgt_best_val_loss = MAX_LOSS
best_model = io.save_model(model)
src_val_acc_list = []
src_val_loss_list = []
trgt_val_acc_list = []
trgt_val_loss_list = []
for epoch in range(args.epochs):
model.train()
len_dataloader = min(len(src_train_loader), len(trgt_train_loader))
# init data structures for saving epoch stats
cls_type = 'mixup' if args.apply_PCM else 'cls'
src_print_losses = {'total': 0.0, cls_type: 0.0}
if args.DefRec_on_src:
src_print_losses['DefRec'] = 0.0
if args.RotCls_on_src:
src_print_losses['RotCls'] = 0.0
if args.DefCls_on_src:
src_print_losses['DefCls'] = 0.0
if args.NormReg_on_src:
src_print_losses['NormReg'] = 0.0
if args.Dec_on_src:
src_print_losses['Decoder'] = 0.0
trgt_print_losses = {'total': 0.0}
if args.DefRec_on_trgt:
trgt_print_losses['DefRec'] = 0.0
if args.RotCls_on_trgt:
trgt_print_losses['RotCls'] = 0.0
if args.DefCls_on_trgt:
trgt_print_losses['DefCls'] = 0.0
if args.NormReg_on_trgt:
trgt_print_losses['NormReg'] = 0.0
if args.Dec_on_trgt:
trgt_print_losses['Decoder'] = 0.0
if args.apply_SPL:
trgt_print_losses['SPL'] = 0.0
if args.apply_GRL:
src_print_losses['GRL'] = trgt_print_losses['GRL'] = 0.0
src_count = trgt_count = 0.0
batch_idx = 1
for data1, data2 in zip(src_train_loader, trgt_train_loader):
opt.zero_grad()
#### source data ####
if data1 is not None:
src_data, src_label, src_norm_curv = data1[0].to(device), data1[1].to(device).squeeze(), data1[2].to(device)
# src_data, src_norm_curv = pc_utils_Norm.dropout_points(src_data, src_norm_curv, 50)
# src_data, src_norm_curv = pc_utils_Norm.remove_region_points(src_data, src_norm_curv, device)
# change to [batch_size, num_coordinates, num_points]
src_fea_pc = pc_utils_Norm.extract_feature_points(src_data, src_norm_curv, 512).to(device) # [B, 512, 3]
src_data = src_data.permute(0, 2, 1)
batch_size = src_data.size()[0]
src_domain_label = torch.zeros(batch_size).long().to(device)
src_data_orig = src_data.clone()
device = torch.device("cuda:" + str(src_data.get_device()) if args.cuda else "cpu")
if args.DefRec_on_src:
src_data = src_data_orig.clone()
src_data, src_mask = DefRec.deform_input(src_data, lookup, args.DefRec_dist, device)
src_logits = model(src_data, activate_DefRec=True)
loss = DefRec.calc_loss(args, src_logits, src_data_orig, src_mask)
src_print_losses['DefRec'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.DefCls_on_src:
src_data = src_data_orig.clone()
src_data, src_def_label, curv_conf = DefCls.defcls_input(src_data, src_norm_curv, lookup, device)
src_logits = model(src_data, activate_DefRec=False)
loss = DefCls.calc_loss(args, src_logits, src_def_label, curv_conf, criterion_elem)
src_print_losses['DefCls'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.RotCls_on_src:
src_data = src_data_orig.clone()
src_data, src_pos_vals = RotCls.rotcls_input(src_data, device)
src_logits = model(src_data, activate_DefRec=False)
loss = RotCls.calc_loss(args, src_logits, src_pos_vals, criterion)
src_print_losses['RotCls'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.NormReg_on_src:
src_data = src_data_orig.clone()
# src_data, src_norm_label, src_curv_label = NormReg.normreg_input(src_data, device)
# src_norm_curv = torch.cat((src_norm_label, src_curv_label), 2).float()
src_logits = model(src_data, activate_DefRec=False)
loss = NormReg.calc_loss(args, src_logits, src_norm_curv)
src_print_losses['NormReg'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.Dec_on_src:
src_data = src_data_orig.clone()
src_fea_pc = src_fea_pc.clone()
src_logits = model(src_data, activate_DefRec=False)
src_decoder_pc = src_logits["decoder"].view(batch_size, args.output_pts, 3) # [B, 512, 3]
loss = args.Decoder_weight * earth_mover_distance(src_fea_pc, src_decoder_pc, transpose=False).sum()
src_print_losses['Decoder'] += loss.item()
src_print_losses['total'] += loss.item()
loss.backward()
if args.apply_GRL:
p = float(batch_idx + epoch * len_dataloader) / args.epochs / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
src_data = src_data_orig.clone()
src_logits = model(src_data, alpha, activate_DefRec=False)
loss = args.grl_weight * criterion(src_logits["domain_cls"], src_domain_label)
src_print_losses['GRL'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.apply_PCM:
src_data = src_data_orig.clone()
src_data, mixup_vals = PCM.mix_shapes(args, src_data, src_label)
src_logits = model(src_data, activate_DefRec=False)
loss = PCM.calc_loss(args, src_logits, mixup_vals, criterion)
src_print_losses['mixup'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
else:
src_data = src_data_orig.clone()
# predict with undistorted shape
src_logits = model(src_data, activate_DefRec=False)
loss = args.cls_weight * criterion(src_logits["cls"], src_label)
src_print_losses['cls'] += loss.item() * batch_size
src_print_losses['total'] += loss.item() * batch_size
loss.backward()
src_count += batch_size
#### target data ####
if data2 is not None:
trgt_data, trgt_label, trgt_norm_curv = data2[0].to(device), data2[1].to(device).squeeze(), data2[2].to(device)
# trgt_data, trgt_norm_curv = pc_utils_Norm.dropout_points(trgt_data, trgt_norm_curv, 50)
trgt_fea_pc = pc_utils_Norm.extract_feature_points(trgt_data, trgt_norm_curv, 512).to(device)
trgt_data = trgt_data.permute(0, 2, 1)
batch_size = trgt_data.size()[0]
trgt_domain_label = torch.ones(batch_size).long().to(device)
trgt_data_orig = trgt_data.clone()
device = torch.device("cuda:" + str(trgt_data.get_device()) if args.cuda else "cpu")
if args.DefRec_on_trgt:
trgt_data = trgt_data_orig.clone()
trgt_data, trgt_mask = DefRec.deform_input(trgt_data, lookup, args.DefRec_dist, device)
trgt_logits = model(trgt_data, activate_DefRec=True)
loss = DefRec.calc_loss(args, trgt_logits, trgt_data_orig, trgt_mask)
trgt_print_losses['DefRec'] += loss.item() * batch_size
trgt_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.DefCls_on_trgt:
trgt_data = trgt_data_orig.clone()
trgt_data, trgt_def_label, curv_conf = DefCls.defcls_input(trgt_data, trgt_norm_curv, lookup, device)
trgt_logits = model(trgt_data, activate_DefRec=False)
loss = DefCls.calc_loss(args, trgt_logits, trgt_def_label, curv_conf, criterion_elem)
trgt_print_losses['DefCls'] += loss.item() * batch_size
trgt_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.RotCls_on_trgt:
trgt_data = trgt_data_orig.clone()
trgt_data, trgt_pos_vals = RotCls.rotcls_input(trgt_data, device)
trgt_logits = model(trgt_data, activate_DefRec=False)
loss = RotCls.calc_loss(args, trgt_logits, trgt_pos_vals, criterion)
trgt_print_losses['RotCls'] += loss.item() * batch_size
trgt_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.NormReg_on_trgt:
trgt_data = trgt_data_orig.clone()
# trgt_data, trgt_norm_label, trgt_curv_label = NormReg.normreg_input(trgt_data, device)
# trgt_norm_curv = torch.cat((trgt_norm_label, trgt_curv_label), 2).float()
trgt_logits = model(trgt_data, activate_DefRec=False)
loss = NormReg.calc_loss(args, trgt_logits, trgt_norm_curv)
trgt_print_losses['NormReg'] += loss.item() * batch_size
trgt_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.Dec_on_trgt:
trgt_data = trgt_data_orig.clone()
trgt_fea_pc = trgt_fea_pc.clone()
trgt_logits = model(trgt_data, activate_DefRec=False)
trgt_decoder_pc = trgt_logits["decoder"].view(batch_size, args.output_pts, 3) # [B, 512, 3]
loss = args.Decoder_weight * earth_mover_distance(trgt_fea_pc, trgt_decoder_pc, transpose=False).sum()
trgt_print_losses['Decoder'] += loss.item()
trgt_print_losses['total'] += loss.item()
loss.backward()
if args.apply_GRL:
p = float(batch_idx + epoch * len_dataloader) / args.epochs / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
src_data = src_data_orig.clone()
src_logits = model(src_data, alpha, activate_DefRec=False)
loss = args.grl_weight * criterion(trgt_logits['domain_cls'], trgt_domain_label)
trgt_print_losses['GRL'] += loss.item() * batch_size
trgt_print_losses['total'] += loss.item() * batch_size
loss.backward()
if args.apply_SPL:
if epoch % 10 == 0:
lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 # penalty parameter
threshold = math.exp(-1 * args.gamma) # Increase as training progresses
trgt_data = trgt_data_orig.clone()
trgt_logits = model(trgt_data, activate_DefRec=False)
trgt_pseudo_label = generate_trgt_pseudo_label(trgt_data, trgt_logits, threshold)
trgt_pseudo_label = trgt_pseudo_label.to(device)
loss = lam * (- torch.sum(
torch.nn.functional.log_softmax(trgt_logits['cls'], dim=1) * trgt_pseudo_label)) / batch_size
trgt_print_losses['SPL'] += loss.item() * batch_size
trgt_print_losses['total'] += loss.item() * batch_size
loss.backward()
trgt_count += batch_size
opt.step()
batch_idx += 1
scheduler.step()
# print progress
src_print_losses = {k: v * 1.0 / src_count for (k, v) in src_print_losses.items()}
src_acc = io.print_progress("Source", "Trn", epoch, src_print_losses)
trgt_print_losses = {k: v * 1.0 / trgt_count for (k, v) in trgt_print_losses.items()}
trgt_acc = io.print_progress("Target", "Trn", epoch, trgt_print_losses)
# ===================
# Validation
# ===================
src_val_acc, src_val_loss, src_conf_mat = test(src_val_loader, model, "Source", "Val", epoch)
trgt_val_acc, trgt_val_loss, trgt_conf_mat = test(trgt_val_loader, model, "Target", "Val", epoch)
src_val_acc_list.append(src_val_acc)
src_val_loss_list.append(src_val_loss)
trgt_val_acc_list.append(trgt_val_acc)
trgt_val_loss_list.append(trgt_val_loss)
# save model according to best source model (since we don't have target labels)
if src_val_acc > src_best_val_acc:
src_best_val_acc = src_val_acc
src_best_val_loss = src_val_loss
trgt_best_val_acc = trgt_val_acc
trgt_best_val_loss = trgt_val_loss
best_val_epoch = epoch
best_epoch_conf_mat = trgt_conf_mat
best_model = io.save_model(model)
# with open('convergence.json', 'w') as f:
# json.dump((src_val_acc_list, src_val_loss_list, trgt_val_acc_list, trgt_val_loss_list), f)
io.cprint("Best model was found at epoch %d, source validation accuracy: %.4f, source validation loss: %.4f,"
"target validation accuracy: %.4f, target validation loss: %.4f"
% (best_val_epoch, src_best_val_acc, src_best_val_loss, trgt_best_val_acc, trgt_best_val_loss))
io.cprint("Best validtion model confusion matrix:")
io.cprint('\n' + str(best_epoch_conf_mat))
# ===================
# Test
# ===================
model = best_model
trgt_test_acc, trgt_test_loss, trgt_conf_mat = test(trgt_test_loader, model, "Target", "Test", 0)
io.cprint("target test accuracy: %.4f, target test loss: %.4f" % (trgt_test_acc, trgt_best_val_loss))
io.cprint("Test confusion matrix:")
io.cprint('\n' + str(trgt_conf_mat))