forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jde_loss.py
193 lines (165 loc) · 7.34 KB
/
jde_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
__all__ = ['JDEDetectionLoss', 'JDEEmbeddingLoss', 'JDELoss']
@register
class JDEDetectionLoss(nn.Layer):
__shared__ = ['num_classes']
def __init__(self, num_classes=1, for_mot=True):
super(JDEDetectionLoss, self).__init__()
self.num_classes = num_classes
self.for_mot = for_mot
def det_loss(self, p_det, anchor, t_conf, t_box):
pshape = paddle.shape(p_det)
pshape.stop_gradient = True
nB, nGh, nGw = pshape[0], pshape[-2], pshape[-1]
nA = len(anchor)
p_det = paddle.reshape(
p_det, [nB, nA, self.num_classes + 5, nGh, nGw]).transpose(
(0, 1, 3, 4, 2))
# 1. loss_conf: cross_entropy
p_conf = p_det[:, :, :, :, 4:6]
p_conf_flatten = paddle.reshape(p_conf, [-1, 2])
t_conf_flatten = t_conf.flatten()
t_conf_flatten = paddle.cast(t_conf_flatten, dtype="int64")
t_conf_flatten.stop_gradient = True
loss_conf = F.cross_entropy(
p_conf_flatten, t_conf_flatten, ignore_index=-1, reduction='mean')
loss_conf.stop_gradient = False
# 2. loss_box: smooth_l1_loss
p_box = p_det[:, :, :, :, :4]
p_box_flatten = paddle.reshape(p_box, [-1, 4])
t_box_flatten = paddle.reshape(t_box, [-1, 4])
fg_inds = paddle.nonzero(t_conf_flatten > 0).flatten()
if fg_inds.numel() > 0:
reg_delta = paddle.gather(p_box_flatten, fg_inds)
reg_target = paddle.gather(t_box_flatten, fg_inds)
else:
reg_delta = paddle.to_tensor([0, 0, 0, 0], dtype='float32')
reg_delta.stop_gradient = False
reg_target = paddle.to_tensor([0, 0, 0, 0], dtype='float32')
reg_target.stop_gradient = True
loss_box = F.smooth_l1_loss(
reg_delta, reg_target, reduction='mean', delta=1.0)
loss_box.stop_gradient = False
return loss_conf, loss_box
def forward(self, det_outs, targets, anchors):
"""
Args:
det_outs (list[Tensor]): output from detection head, each one
is a 4-D Tensor with shape [N, C, H, W].
targets (dict): contains 'im_id', 'gt_bbox', 'gt_ide', 'image',
'im_shape', 'scale_factor' and 'tbox', 'tconf', 'tide' of
each FPN level.
anchors (list[list]): anchor setting of JDE model, N row M col, N is
the anchor levels(FPN levels), M is the anchor scales each
level.
"""
assert len(det_outs) == len(anchors)
loss_confs = []
loss_boxes = []
for i, (p_det, anchor) in enumerate(zip(det_outs, anchors)):
t_conf = targets['tconf{}'.format(i)]
t_box = targets['tbox{}'.format(i)]
loss_conf, loss_box = self.det_loss(p_det, anchor, t_conf, t_box)
loss_confs.append(loss_conf)
loss_boxes.append(loss_box)
if self.for_mot:
return {'loss_confs': loss_confs, 'loss_boxes': loss_boxes}
else:
jde_conf_losses = sum(loss_confs)
jde_box_losses = sum(loss_boxes)
jde_det_losses = {
"loss_conf": jde_conf_losses,
"loss_box": jde_box_losses,
"loss": jde_conf_losses + jde_box_losses,
}
return jde_det_losses
@register
class JDEEmbeddingLoss(nn.Layer):
def __init__(self, ):
super(JDEEmbeddingLoss, self).__init__()
self.phony = self.create_parameter(shape=[1], dtype="float32")
def emb_loss(self, p_ide, t_conf, t_ide, emb_scale, classifier):
emb_dim = p_ide.shape[1]
p_ide = p_ide.transpose((0, 2, 3, 1))
p_ide_flatten = paddle.reshape(p_ide, [-1, emb_dim])
mask = t_conf > 0
mask = paddle.cast(mask, dtype="int64")
mask.stop_gradient = True
emb_mask = mask.max(1).flatten()
emb_mask_inds = paddle.nonzero(emb_mask > 0).flatten()
emb_mask_inds.stop_gradient = True
# use max(1) to decide the id, TODO: more reseanable strategy
t_ide_flatten = t_ide.max(1).flatten()
t_ide_flatten = paddle.cast(t_ide_flatten, dtype="int64")
valid_inds = paddle.nonzero(t_ide_flatten != -1).flatten()
if emb_mask_inds.numel() == 0 or valid_inds.numel() == 0:
# loss_ide = paddle.to_tensor([0]) # will be error in gradient backward
loss_ide = self.phony * 0 # todo
else:
embedding = paddle.gather(p_ide_flatten, emb_mask_inds)
embedding = emb_scale * F.normalize(embedding)
logits = classifier(embedding)
ide_target = paddle.gather(t_ide_flatten, emb_mask_inds)
loss_ide = F.cross_entropy(
logits, ide_target, ignore_index=-1, reduction='mean')
loss_ide.stop_gradient = False
return loss_ide
def forward(self, ide_outs, targets, emb_scale, classifier):
loss_ides = []
for i, p_ide in enumerate(ide_outs):
t_conf = targets['tconf{}'.format(i)]
t_ide = targets['tide{}'.format(i)]
loss_ide = self.emb_loss(p_ide, t_conf, t_ide, emb_scale,
classifier)
loss_ides.append(loss_ide)
return loss_ides
@register
class JDELoss(nn.Layer):
def __init__(self):
super(JDELoss, self).__init__()
def forward(self, loss_confs, loss_boxes, loss_ides, loss_params_cls,
loss_params_reg, loss_params_ide, targets):
assert len(loss_confs) == len(loss_boxes) == len(loss_ides)
assert len(loss_params_cls) == len(loss_params_reg) == len(
loss_params_ide)
assert len(loss_confs) == len(loss_params_cls)
batchsize = targets['gt_bbox'].shape[0]
nTargets = paddle.nonzero(paddle.sum(targets['gt_bbox'], axis=2)).shape[
0] / batchsize
nTargets = paddle.to_tensor(nTargets, dtype='float32')
nTargets.stop_gradient = True
jde_losses = []
for i, (loss_conf, loss_box, loss_ide, l_conf_p, l_box_p,
l_ide_p) in enumerate(
zip(loss_confs, loss_boxes, loss_ides, loss_params_cls,
loss_params_reg, loss_params_ide)):
jde_loss = l_conf_p(loss_conf) + l_box_p(loss_box) + l_ide_p(
loss_ide)
jde_losses.append(jde_loss)
loss_all = {
"loss_conf": sum(loss_confs),
"loss_box": sum(loss_boxes),
"loss_ide": sum(loss_ides),
"loss": sum(jde_losses),
"nTargets": nTargets,
}
return loss_all