-
Notifications
You must be signed in to change notification settings - Fork 1
/
msstftd.py
156 lines (136 loc) · 7.11 KB
/
msstftd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""MS-STFT discriminator, provided here for reference."""
import typing as tp
import torchaudio
import torch
from torch import nn
from einops import rearrange
from modules import NormConv2d
FeatureMapType = tp.List[torch.Tensor]
LogitsType = torch.Tensor
DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]]
def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)
class DiscriminatorSTFT(nn.Module):
"""STFT sub-discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_fft (int): Size of FFT for each scale. Default: 1024
hop_length (int): Length of hop between STFT windows for each scale. Default: 256
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)``
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)``
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]``
win_length (int): Window size for each scale. Default: 1024
normalized (bool): Whether to normalize by magnitude after stft. Default: True
norm (str): Normalization method. Default: `'weight_norm'`
activation (str): Activation function. Default: `'LeakyReLU'`
activation_params (dict): Parameters to provide to the activation function.
growth (int): Growth factor for the filters. Default: 1
"""
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
super().__init__()
assert len(kernel_size) == 2
assert len(stride) == 2
self.filters = filters
self.in_channels = in_channels
self.out_channels = out_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.activation = getattr(torch.nn, activation)(**activation_params)
self.spec_transform = torchaudio.transforms.Spectrogram(
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
normalized=self.normalized, center=False, pad_mode=None, power=None)
spec_channels = 2 * self.in_channels
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
)
in_chs = min(filters_scale * self.filters, max_filters)
for i, dilation in enumerate(dilations):
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
norm=norm))
in_chs = out_chs
out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm))
self.conv_post = NormConv2d(out_chs, self.out_channels,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm)
def forward(self, x: torch.Tensor):
fmap = []
# print('x ', x.shape)
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
# print('z ', z.shape)
z = torch.cat([z.real, z.imag], dim=1)
# print('cat_z ', z.shape)
z = rearrange(z, 'b c w t -> b c t w')
for i, layer in enumerate(self.convs):
z = layer(z)
z = self.activation(z)
# print('z i', i, z.shape)
fmap.append(z)
z = self.conv_post(z)
# print('logit ', z.shape)
return z, fmap
class MultiScaleSTFTDiscriminator(nn.Module):
"""Multi-Scale STFT (MS-STFT) discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_ffts (Sequence[int]): Size of FFT for each scale
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale
win_lengths (Sequence[int]): Window size for each scale
**kwargs: additional args for STFTDiscriminator
"""
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
n_ffts: tp.List[int] = [1024, 2048, 512, 256, 128], hop_lengths: tp.List[int] = [256, 512, 128, 64, 32],
win_lengths: tp.List[int] = [1024, 2048, 512, 256, 128], **kwargs):
super().__init__()
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
self.discriminators = nn.ModuleList([
DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
for i in range(len(n_ffts))
])
self.num_discriminators = len(self.discriminators)
def forward(self, x: torch.Tensor) -> DiscriminatorOutput:
logits = []
fmaps = []
for disc in self.discriminators:
logit, fmap = disc(x)
logits.append(logit)
fmaps.append(fmap)
return logits, fmaps
def test():
disc = MultiScaleSTFTDiscriminator(filters=32)
y = torch.randn(1, 1, 24000)
y_hat = torch.randn(1, 1, 24000)
y_disc_r, fmap_r = disc(y)
#print('y_disc_r ', len(y_disc_r))
# print('fmap_r ', len(fmap_r))
y_disc_gen, fmap_gen = disc(y_hat)
# print('y_disc_gen ', y_disc_gen.shape)
# print('fmap_gen ', len(fmap_gen))
assert len(y_disc_r) == len(y_disc_gen) == len(fmap_r) == len(fmap_gen) == disc.num_discriminators
assert all([len(fm) == 5 for fm in fmap_r + fmap_gen])
assert all([list(f.shape)[:2] == [1, 32] for fm in fmap_r + fmap_gen for f in fm])
assert all([len(logits.shape) == 4 for logits in y_disc_r + y_disc_gen])
if __name__ == '__main__':
test()