-
Notifications
You must be signed in to change notification settings - Fork 44
/
gaussiant_sampler.py
445 lines (380 loc) · 20.3 KB
/
gaussiant_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
This is the cleaned up version of the original GaussianModel and GaussianSampler
Including it's core functionalities:
- Differentiable gaussian splatting
- Explicitly defined parameters?
- Image-based rendering?
- Cloning? Pruning? Splitting?
"""
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from easyvolcap.runners.volumetric_video_viewer import VolumetricVideoViewer
import torch
import numpy as np
from torch import nn
from typing import Literal
from torch.optim import Adam
from torch.nn import functional as F
from easyvolcap.engine import cfg, args
from easyvolcap.engine import SAMPLERS
from easyvolcap.engine.registry import call_from_cfg
from easyvolcap.utils.base_utils import dotdict
from easyvolcap.utils.console_utils import *
from easyvolcap.utils.console_utils import dotdict
from easyvolcap.utils.bound_utils import get_bounds
from easyvolcap.utils.chunk_utils import multi_gather, multi_scatter
from easyvolcap.utils.gaussian_utils import GaussianModel, in_frustum
from easyvolcap.utils.net_utils import normalize, typed, update_optimizer_state
from easyvolcap.utils.data_utils import load_pts, export_pts, to_x, to_cuda, to_cpu, to_tensor, remove_batch
from easyvolcap.models.cameras.optimizable_camera import OptimizableCamera
from easyvolcap.models.samplers.point_planes_sampler import PointPlanesSampler
from easyvolcap.models.networks.volumetric_video_network import VolumetricVideoNetwork
from easyvolcap.dataloaders.datasets.volumetric_video_dataset import VolumetricVideoDataset
@SAMPLERS.register_module()
class GaussianTSampler(PointPlanesSampler):
def __init__(self,
# Legacy APIs
network: VolumetricVideoNetwork = None, # ignore this
# Initializations
sh_deg: int = 3,
init_occ: float = 0.75,
scale_min: float = 1e-4, # 0.0001m should not be too small
scale_max: float = 1e1, # 100m should not be too large
scale_mod: float = 1.0,
# Densify & pruning configs
densify_until_iter: int = 15000,
densify_from_iter: int = 500,
densification_interval: int = 100,
opacity_reset_interval: int = 3000e9, # UNUSED:
sh_update_iter: int = 1000,
densify_grad_threshold: float = 0.0002,
percent_dense: float = 0.01,
size_threshold: float = None, # UNUSED:
min_opacity: float = 0.005,
preload_gs: str = '',
# Housekeepings
**kwargs,
):
# Initialize parents and remove unwanted modules
self.kwargs = dotdict(kwargs)
call_from_cfg(super().__init__, kwargs, network=network)
del self.pcd_embedder
del self.xyz_embedder
del self.resd_regressor
del self.geo_regressor
del self.dir_embedder
del self.rgb_regressor
# Gaussian models for every frame
self.sh_deg = sh_deg
self.scale_mod = scale_mod
self.pcds: nn.ParameterList[GaussianModel] = nn.ParameterList([
GaussianModel(
pcd,
self.rgbs[i] if len(self.rgbs) else None,
self.occs[i] if len(self.occs) else init_occ,
self.rads[i].expand(self.rads[i].shape[0], 3) if len(self.rads) else None,
sh_deg,
scale_min,
scale_max
)
for i, pcd in enumerate(self.pcds)
])
# Update parameters (densification & pruning)
self.densify_until_iter = densify_until_iter
self.densify_from_iter = densify_from_iter
self.densification_interval = densification_interval
self.opacity_reset_interval = opacity_reset_interval
self.densify_grad_threshold = densify_grad_threshold
self.sh_update_iter = sh_update_iter
self.size_threshold = size_threshold
self.percent_dense = percent_dense
self.min_opacity = min_opacity
self.last_output = None # will only store the updates for one of the points
# Debug options
self.scale_mult = 1.0
self.alpha_mult = 1.0
# Test time controls
self.post_handle = self.register_load_state_dict_post_hook(self._load_state_dict_post_hook)
if preload_gs:
assert len(self.pcds) == 1, 'For now, preloading 3dgs is only supported for static scene reconstruction'
self.pcds[0].load_ply(preload_gs)
def render_imgui(self, viewer: 'VolumetricVideoViewer', batch: dotdict):
from imgui_bundle import imgui
self.scale_mult = imgui.slider_float(f'Scale multiplier', self.scale_mult, 0.1, 5.0)[1] # 0.1mm
self.alpha_mult = imgui.slider_float(f'Alpha multiplier', self.alpha_mult, 0.1, 5.0)[1] # 0.1mm
for i, pcd in enumerate(self.pcds):
imgui.text(f'Number of points: {len(pcd._xyz)}')
def render_fast(self, xyz: torch.Tensor, sh: torch.Tensor, scale3: torch.Tensor, rot4: torch.Tensor, occ1: torch.Tensor, batch: dotdict):
from easyvolcap.utils.gaussian_utils import prepare_gaussian_camera
camera = prepare_gaussian_camera(batch)
# Remove batch dimension
xyz, sh, scale3, rot4, occ1 = remove_batch([xyz, sh, scale3, rot4, occ1])
from fast_gauss import GaussianRasterizationSettings, GaussianRasterizer
# Prepare rasterization settings for gaussian
raster_settings = GaussianRasterizationSettings(
image_height=camera.image_height,
image_width=camera.image_width,
tanfovx=camera.tanfovx,
tanfovy=camera.tanfovy,
bg=torch.full([3], self.bg_brightness if hasattr(self, 'bg_brightness') else 0.0, device=xyz.device), # GPU
scale_modifier=1.0,
viewmatrix=camera.world_view_transform,
projmatrix=camera.full_proj_transform,
sh_degree=0,
campos=camera.camera_center,
prefiltered=False,
debug=False
)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
image, alpha = rasterizer(
means3D=xyz,
means2D=None,
shs=sh.mT,
colors_precomp=None,
opacities=occ1,
scales=scale3,
rotations=rot4,
cov3D_precomp=None,
)
if image is not None:
rgb = image[None].permute(0, 2, 3, 1)
acc = alpha[None].permute(0, 2, 3, 1)
dpt = torch.zeros_like(rgb[..., :1])
return rgb, acc, dpt
else:
return None, None, None
def render_gaussians(self, xyz: torch.Tensor, sh: torch.Tensor, scale3: torch.Tensor, rot4: torch.Tensor, occ1: torch.Tensor, batch: dotdict):
# Lazy imports
from diff_gauss import rasterize_gaussians, GaussianRasterizationSettings, GaussianRasterizer
from easyvolcap.utils.gaussian_utils import prepare_gaussian_camera
# Remove batch dimension
xyz, sh, scale3, rot4, occ1 = remove_batch([xyz, sh, scale3, rot4, occ1])
# Prepare the camera transformation for Gaussian
gaussian_camera = to_x(prepare_gaussian_camera(batch), torch.float)
# is_in_frustum = in_frustum(xyz, gaussian_camera.full_proj_transform)
# print('Number of points to render:', is_in_frustum.sum().item())
# Prepare rasterization settings for gaussian
raster_settings = GaussianRasterizationSettings(
image_height=gaussian_camera.image_height,
image_width=gaussian_camera.image_width,
tanfovx=gaussian_camera.tanfovx,
tanfovy=gaussian_camera.tanfovy,
bg=torch.full([3], self.bg_brightness if hasattr(self, 'bg_brightness') else 0.0, device=xyz.device), # GPU
scale_modifier=self.scale_mod if hasattr(self, 'bg_brightness') else 1.0,
viewmatrix=gaussian_camera.world_view_transform,
projmatrix=gaussian_camera.full_proj_transform,
sh_degree=self.sh_deg if hasattr(self, 'sh_deg') else 0,
campos=gaussian_camera.camera_center,
prefiltered=False,
debug=self.debug if hasattr(self, 'debug') else False,
)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
scr = torch.zeros_like(xyz, requires_grad=True) + 0 # gradient magic
if scr.requires_grad: scr.retain_grad()
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
rendered_image, rendered_depth, rendered_alpha, radii = typed(torch.float, torch.float)(rasterizer)(
means3D=xyz,
means2D=scr,
shs=sh.mT,
colors_precomp=None,
opacities=occ1,
scales=scale3,
rotations=rot4,
cov3D_precomp=None,
)
rgb = rendered_image[None].permute(0, 2, 3, 1)
acc = rendered_alpha[None].permute(0, 2, 3, 1)
dpt = rendered_depth[None].permute(0, 2, 3, 1)
batch.output.rad = radii[None] # Store radii for later use
batch.output.scr = scr # Store screen space points for later use, # !: BATCH
return rgb, acc, dpt
def render_mips(self, xyz: torch.Tensor, sh: torch.Tensor, scale3: torch.Tensor, rot4: torch.Tensor, occ1: torch.Tensor, batch: dotdict):
# Lazy imports
from diff_mip_rasterization import rasterize_mips, MipRasterizationSettings, MipRasterizer
from easyvolcap.utils.gaussian_utils import prepare_gaussian_camera
# Remove batch dimension
xyz, sh, scale3, rot4, occ1 = remove_batch([xyz, sh, scale3, rot4, occ1])
# Prepare the camera transformation for Gaussian
gaussian_camera = to_x(prepare_gaussian_camera(batch), torch.float)
if self.training:
subpixel_offset = torch.rand((int(gaussian_camera.image_height), int(gaussian_camera.image_width), 2), dtype=xyz.dtype, device=xyz.device)
else:
subpixel_offset = xyz.new_zeros((int(gaussian_camera.image_height), int(gaussian_camera.image_width), 2))
# Prepare rasterization settings for gaussian
raster_settings = MipRasterizationSettings(
image_height=gaussian_camera.image_height,
image_width=gaussian_camera.image_width,
tanfovx=gaussian_camera.tanfovx,
tanfovy=gaussian_camera.tanfovy,
bg=torch.full([3], self.bg_brightness if hasattr(self, 'bg_brightness') else 0.0, device=xyz.device), # GPU
scale_modifier=self.scale_mod if hasattr(self, 'scale_mod') else 1.0,
viewmatrix=gaussian_camera.world_view_transform,
projmatrix=gaussian_camera.full_proj_transform,
sh_degree=self.sh_deg if hasattr(self, 'sh_deg') else 0,
campos=gaussian_camera.camera_center,
prefiltered=False,
kernel_size=self.kernel_size if hasattr(self, 'kernel_size') else 0.1,
subpixel_offset=subpixel_offset,
debug=self.debug if hasattr(self, 'debug') else False,
)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
scr = torch.zeros_like(xyz, requires_grad=True) + 0 # gradient magic
if scr.requires_grad: scr.retain_grad()
rasterizer = MipRasterizer(raster_settings=raster_settings)
rendered_image, radii = typed(torch.float, torch.float)(rasterizer)(
means3D=xyz,
means2D=scr,
shs=sh.mT,
colors_precomp=None,
opacities=occ1,
scales=scale3,
rotations=rot4,
cov3D_precomp=None,
)
rgb = rendered_image[None].permute(0, 2, 3, 1)
batch.output.rad = radii[None] # Store radii for later use
batch.output.scr = scr # Store screen space points for later use, # !: BATCH
return rgb, rgb[..., :1], rgb[..., :1]
def render_radius(self, xyz: torch.Tensor, sh: torch.Tensor, radius: torch.Tensor, occ1: torch.Tensor, batch: dotdict):
# Lazy imports
from diff_point_rasterization import rasterize_points, PointRasterizationSettings, PointRasterizer
from easyvolcap.utils.gaussian_utils import prepare_gaussian_camera
assert sh.ndim == 4, 'Should input 4 dim SH: B, N, C, SH'
# Remove batch dimension
xyz, sh, radius, occ1 = remove_batch([xyz, sh, radius, occ1])
# Prepare the camera transformation for Gaussian
gaussian_camera = to_x(prepare_gaussian_camera(batch), torch.float)
# Prepare rasterization settings for gaussian
raster_settings = PointRasterizationSettings(
image_height=gaussian_camera.image_height,
image_width=gaussian_camera.image_width,
tanfovx=gaussian_camera.tanfovx,
tanfovy=gaussian_camera.tanfovy,
bg=torch.full([3], self.bg_brightness if hasattr(self, 'bg_brightness') else 0.0, device=xyz.device), # GPU
scale_modifier=self.scale_mod if hasattr(self, 'scale_mod') else 1.0,
viewmatrix=gaussian_camera.world_view_transform,
projmatrix=gaussian_camera.full_proj_transform,
sh_degree=self.sh_deg if hasattr(self, 'sh_deg') else 0,
campos=gaussian_camera.camera_center,
prefiltered=False,
debug=self.debug if hasattr(self, 'debug') else False,
)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
scr = torch.zeros_like(xyz, requires_grad=True) + 0 # gradient magic
if scr.requires_grad: scr.retain_grad()
rasterizer = PointRasterizer(raster_settings=raster_settings)
rendered_image, rendered_depth, rendered_alpha, radii = typed(torch.float, torch.float)(rasterizer)(
means3D=xyz,
means2D=scr,
shs=sh.mT,
colors_precomp=None,
opacities=occ1,
radius=radius,
)
rgb = rendered_image[None].permute(0, 2, 3, 1)
acc = rendered_alpha[None].permute(0, 2, 3, 1)
dpt = rendered_depth[None].permute(0, 2, 3, 1)
batch.output.rad = radii[None] # Store radii for later use
batch.output.scr = scr # Store screen space points for later use, # !: BATCH
return rgb, acc, dpt
@torch.no_grad()
def update_gaussians(self, batch: dotdict):
if not self.training: return
# Prepare global variables
iter: int = batch.meta.iter # controls whether we're to update in this iteration
output = self.last_output # contains necessary information for updating gaussians
optimizer: Adam = cfg.runner.optimizer
# Update for all frames
if iter > 0 and iter < self.densify_until_iter and iter % self.sh_update_iter == 0:
for pcd in self.pcds:
pcd.oneupSHdegree()
# Update only the rendered frame
if iter > 0 and iter < self.densify_until_iter and output is not None:
# The dictionary for controlling the optimizer
optimizer_state = dotdict()
# Update all rendered gaussians in the batch
for i, pcd in enumerate(output.pcd): # removing batch dim
pcd: GaussianModel
# Preparing optimizer states for update
for name, params in pcd.named_parameters():
if params.requires_grad:
optimizer_state[params] = dotdict(
name=name,
old_keep=torch.ones_like(params, dtype=torch.bool, requires_grad=False),
new_keep=torch.ones_like(params, dtype=torch.bool, requires_grad=False),
new_params=None,
)
# Preparing gaussian stats for update
radii = output.rad[i]
visibility_filter = radii > 0
viewspace_point_tensor = output.scr # no indexing, otherwise no grad # !: BATCH
if output.scr.grad is None: continue # previous rendering was an evaluation
pcd.max_radii2D[visibility_filter] = torch.max(pcd.max_radii2D[visibility_filter], radii[visibility_filter])
pcd.add_densification_stats(viewspace_point_tensor, visibility_filter)
# Perform densification and pruning
if iter > self.densify_from_iter and iter % self.densification_interval == 0:
pcd.densify_and_prune(self.densify_grad_threshold, self.min_opacity, self.scale_mod, self.size_threshold, self.percent_dense, optimizer_state)
log(yellow_slim('Densification and pruning done! ' +
f'min opacity: {pcd.get_opacity.min().item():.4f} ' +
f'max opacity: {pcd.get_opacity.max().item():.4f} ' +
f'number of points: {pcd.get_xyz.shape[0]}'))
# Perform opacity reset
if iter > self.densify_from_iter and iter % self.opacity_reset_interval == 0:
pcd.reset_opacity(optimizer_state)
log(yellow_slim('Resetting opacity done! ' +
f'min opacity: {pcd.get_opacity.min().item():.4f} ' +
f'max opacity: {pcd.get_opacity.max().item():.4f}'))
# Update the actual optimizer states
update_optimizer_state(optimizer, optimizer_state)
@torch.no_grad()
def _load_state_dict_pre_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
# Supports loading points and features with different shapes
if hasattr(self, 'pcds'):
pcd_keys = []
for f, pcd in enumerate(self.pcds):
for name, params in pcd.named_parameters():
params.data = params.data.new_empty(state_dict[f'{prefix}pcds.{f}.{name}'].shape)
pcd_keys.append(f'{prefix}pcds.{f}.{name}')
self.points_aligned = True # need aligned when new check points are loaded
self.points_expanded = True # need aligned when new check points are loaded
keys = list(state_dict.keys())
for key in keys:
if key.startswith(f'{prefix}pcds.') and key not in pcd_keys:
del state_dict[key]
# Historical reason
if f'{prefix}occs.0' in state_dict:
del state_dict[f'{prefix}occs.0']
# Historical reason
if f'{prefix}rgbs.0' in state_dict:
del state_dict[f'{prefix}rgbs.0']
# Historical reason
if f'{prefix}rads.0' in state_dict:
del state_dict[f'{prefix}rads.0']
@torch.no_grad()
def _load_state_dict_post_hook(self, module, incompatible_keys):
# Load tighter bounds from the trained models
dataset: VolumetricVideoDataset = cfg.runner.val_dataloader.dataset
dataset.vhull_bounds = [dataset.bounds for _ in range(len(self.pcds))]
for i in range(len(self.pcds)):
if self.pcds[i] is not None:
dataset.vhull_bounds[i] = get_bounds(self.pcds[i].get_xyz[None], padding=0.01)[0].cpu() # MARK: SYNC
def forward(self, batch: dotdict):
# Initialization & densification & pruning
self.init_points(batch)
self.update_gaussians(batch)
# Construct renderable parameters
index, time = self.sample_index_time(batch)
xyz = torch.stack([self.pcds[l].get_xyz for l in index]) # B, N, 3
scale3 = torch.stack([self.pcds[l].get_scaling for l in index]) # B, N, 3
rot4 = torch.stack([self.pcds[l].get_rotation for l in index]) # B, N, 4
alpha = torch.stack([self.pcds[l].get_opacity for l in index]) # B, N, 1
sh = torch.stack([self.pcds[l].get_features for l in index]).mT # B, N, C, SH
# Perform points rendering
rgb, acc, dpt = self.render_gaussians(xyz, sh, scale3 * self.scale_mult, rot4, alpha * self.alpha_mult, batch) # B, HW, C
# rgb, acc, dpt = (self.render_gaussians if args.type == 'train' else self.render_fast)(xyz, sh, scale3 * self.scale_mult, rot4, alpha * self.alpha_mult, batch) # B, HW, C
# Prepare output
if rgb is not None:
batch.output.pcd = [self.pcds[l] for l in index]
self.store_output(None, xyz, rgb, acc, dpt, batch)
self.last_output = batch.output # retain gradients after updates