From f6747f65826b68cf210df529dc1809fb96331a7f Mon Sep 17 00:00:00 2001 From: yangxuan Date: Tue, 10 Dec 2024 16:39:41 +0800 Subject: [PATCH] enhance: refine read write cases 1. Control search time during 2 insert stages, make sure search donesn't shift away from insert proportions. 2. Collect ndcg metric 3. Optimize, serial search and conc search after insertion Signed-off-by: yangxuan --- tests/test_rate_runner.py | 6 +- .../backend/clients/milvus/milvus.py | 12 +- vectordb_bench/backend/runner/rate_runner.py | 47 ++++-- .../backend/runner/read_write_runner.py | 138 +++++++++++++----- .../backend/runner/serial_runner.py | 10 +- vectordb_bench/backend/runner/util.py | 16 -- vectordb_bench/backend/utils.py | 1 + 7 files changed, 151 insertions(+), 79 deletions(-) diff --git a/tests/test_rate_runner.py b/tests/test_rate_runner.py index 363b7a33c..df92b0dd7 100644 --- a/tests/test_rate_runner.py +++ b/tests/test_rate_runner.py @@ -52,9 +52,9 @@ def test_read_write_runner(db, insert_rate, conc: list, search_stage: Iterable[f def get_db(db: str, config: dict) -> VectorDB: if db == DB.Milvus.name: - return DB.Milvus.init_cls(dim=768, db_config=config, db_case_config=FLATConfig(metric_type="COSINE"), drop_old=True, pre_load=True) + return DB.Milvus.init_cls(dim=768, db_config=config, db_case_config=FLATConfig(metric_type="COSINE"), drop_old=True) elif db == DB.ZillizCloud.name: - return DB.ZillizCloud.init_cls(dim=768, db_config=config, db_case_config=AutoIndexConfig(metric_type="COSINE"), drop_old=True, pre_load=True) + return DB.ZillizCloud.init_cls(dim=768, db_config=config, db_case_config=AutoIndexConfig(metric_type="COSINE"), drop_old=True) else: raise ValueError(f"unknown db: {db}") @@ -76,7 +76,7 @@ def get_db(db: str, config: dict) -> VectorDB: } conc = (1, 15, 50) - search_stage = (0.5, 0.6, 0.7, 0.8, 0.9, 1.0) + search_stage = (0.5, 0.6, 0.7, 0.8, 0.9) db = get_db(flags.db, config) test_read_write_runner( diff --git a/vectordb_bench/backend/clients/milvus/milvus.py b/vectordb_bench/backend/clients/milvus/milvus.py index 7267e06ee..251dee8ad 100644 --- a/vectordb_bench/backend/clients/milvus/milvus.py +++ b/vectordb_bench/backend/clients/milvus/milvus.py @@ -8,7 +8,7 @@ from pymilvus import Collection, utility from pymilvus import CollectionSchema, DataType, FieldSchema, MilvusException -from ..api import VectorDB, IndexType +from ..api import VectorDB from .config import MilvusIndexConfig @@ -66,8 +66,7 @@ def __init__( self.case_config.index_param(), index_name=self._index_name, ) - if kwargs.get("pre_load") is True: - self._pre_load(col) + col.load() connections.disconnect("default") @@ -90,16 +89,15 @@ def init(self) -> None: connections.disconnect("default") def _optimize(self): - self._post_insert() log.info(f"{self.name} optimizing before search") + self._post_insert() try: - self.col.load() + self.col.load(refresh=True) except Exception as e: log.warning(f"{self.name} optimize error: {e}") raise e from None def _post_insert(self): - log.info(f"{self.name} post insert before optimize") try: self.col.flush() # wait for index done and load refresh @@ -130,7 +128,7 @@ def wait_index(): log.warning(f"{self.name} compact error: {e}") if hasattr(e, 'code'): if e.code().name == 'PERMISSION_DENIED': - log.warning(f"Skip compact due to permission denied.") + log.warning("Skip compact due to permission denied.") pass else: raise e diff --git a/vectordb_bench/backend/runner/rate_runner.py b/vectordb_bench/backend/runner/rate_runner.py index 4b6d7f6cf..d77c0fd15 100644 --- a/vectordb_bench/backend/runner/rate_runner.py +++ b/vectordb_bench/backend/runner/rate_runner.py @@ -1,5 +1,6 @@ import logging import time +import concurrent from concurrent.futures import ThreadPoolExecutor import multiprocessing as mp @@ -9,7 +10,7 @@ from vectordb_bench.backend.utils import time_it from vectordb_bench import config -from .util import get_data, is_futures_completed, get_future_exceptions +from .util import get_data log = logging.getLogger(__name__) @@ -54,26 +55,42 @@ def submit_by_rate() -> bool: start_time = time.perf_counter() finished, elapsed_time = submit_by_rate() if finished is True: - q.put(None, block=True) + q.put(True, block=True) log.info(f"End of dataset, left unfinished={len(executing_futures)}") - return + break - q.put(True, block=False) + q.put(False, block=False) wait_interval = 1 - elapsed_time if elapsed_time < 1 else 0.001 - e, completed = is_futures_completed(executing_futures, wait_interval) - if completed is True: - ex = get_future_exceptions(executing_futures) - if ex is not None: - log.warn(f"task error, terminating, err={ex}") - q.put(None) - executor.shutdown(wait=True, cancel_futures=True) - raise ex + try: + done, not_done = concurrent.futures.wait( + executing_futures, + timeout=wait_interval, + return_when=concurrent.futures.FIRST_EXCEPTION) + + if len(not_done) > 0: + log.warning(f"Failed to finish all tasks in 1s, [{len(not_done)}/{len(executing_futures)}] tasks are not done, waited={wait_interval:.2f}, trying to wait in the next round") + executing_futures = list(not_done) else: log.debug(f"Finished {len(executing_futures)} insert-{config.NUM_PER_BATCH} task in 1s, wait_interval={wait_interval:.2f}") - executing_futures = [] - else: - log.warning(f"Failed to finish tasks in 1s, {e}, waited={wait_interval:.2f}, try to check the next round") + executing_futures = [] + except Exception as e: + log.warn(f"task error, terminating, err={e}") + q.put(None, block=True) + executor.shutdown(wait=True, cancel_futures=True) + raise e + dur = time.perf_counter() - start_time if dur < 1: time.sleep(1 - dur) + + # wait for all tasks in executing_futures to complete + if len(executing_futures) > 0: + try: + done, _ = concurrent.futures.wait(executing_futures, + return_when=concurrent.futures.FIRST_EXCEPTION) + except Exception as e: + log.warn(f"task error, terminating, err={e}") + q.put(None, block=True) + executor.shutdown(wait=True, cancel_futures=True) + raise e diff --git a/vectordb_bench/backend/runner/read_write_runner.py b/vectordb_bench/backend/runner/read_write_runner.py index 6e043dceb..fd425b227 100644 --- a/vectordb_bench/backend/runner/read_write_runner.py +++ b/vectordb_bench/backend/runner/read_write_runner.py @@ -24,7 +24,7 @@ def __init__( k: int = 100, filters: dict | None = None, concurrencies: Iterable[int] = (1, 15, 50), - search_stage: Iterable[float] = (0.5, 0.6, 0.7, 0.8, 0.9, 1.0), # search in any insert portion, 0.0 means search from the start + search_stage: Iterable[float] = (0.5, 0.6, 0.7, 0.8, 0.9), # search from insert portion, 0.0 means search from the start read_dur_after_write: int = 300, # seconds, search duration when insertion is done timeout: float | None = None, ): @@ -32,7 +32,7 @@ def __init__( self.data_volume = dataset.data.size for stage in search_stage: - assert 0.0 <= stage <= 1.0, "each search stage should be in [0.0, 1.0]" + assert 0.0 <= stage < 1.0, "each search stage should be in [0.0, 1.0)" self.search_stage = sorted(search_stage) self.read_dur_after_write = read_dur_after_write @@ -65,48 +65,114 @@ def __init__( k=k, ) + def run_optimize(self): + """Optimize needs to run in differenct process for pymilvus schema recursion problem""" + with self.db.init(): + log.info("Search after write - Optimize start") + self.db.optimize() + log.info("Search after write - Optimize finished") + + def run_search(self): + log.info("Search after write - Serial search start") + res, ssearch_dur = self.serial_search_runner.run() + recall, ndcg, p99_latency = res + log.info(f"Search after write - Serial search - recall={recall}, ndcg={ndcg}, p99={p99_latency}, dur={ssearch_dur:.4f}") + log.info(f"Search after wirte - Conc search start, dur for each conc={self.read_dur_after_write}") + max_qps = self.run_by_dur(self.read_dur_after_write) + log.info(f"Search after wirte - Conc search finished, max_qps={max_qps}") + + return (max_qps, recall, ndcg, p99_latency) + def run_read_write(self): - futures = [] with mp.Manager() as m: q = m.Queue() with concurrent.futures.ProcessPoolExecutor(mp_context=mp.get_context("spawn"), max_workers=2) as executor: - futures.append(executor.submit(self.run_with_rate, q)) - futures.append(executor.submit(self.run_search_by_sig, q)) - - for future in concurrent.futures.as_completed(futures): - res = future.result() - log.info(f"Result = {res}") - + read_write_futures = [] + read_write_futures.append(executor.submit(self.run_with_rate, q)) + read_write_futures.append(executor.submit(self.run_search_by_sig, q)) + + try: + for f in concurrent.futures.as_completed(read_write_futures): + res = f.result() + log.info(f"Result = {res}") + + # Wait for read_write_futures finishing and do optimize and search + op_future = executor.submit(self.run_optimize) + op_future.result() + + search_future = executor.submit(self.run_search) + last_res = search_future.result() + + log.info(f"Max QPS after optimze and search: {last_res}") + except Exception as e: + log.warning(f"Read and write error: {e}") + executor.shutdown(wait=True, cancel_futures=True) + raise e log.info("Concurrent read write all done") - def run_search_by_sig(self, q): - res = [] + """ + Args: + q: multiprocessing queue + (None) means abnormal exit + (False) means updating progress + (True) means normal exit + """ + result, start_batch = [], 0 total_batch = math.ceil(self.data_volume / self.insert_rate) - batch = 0 - recall = 'x' + recall, ndcg, p99_latency = None, None, None + + def wait_next_target(start, target_batch) -> bool: + """Return False when receive True or None""" + while start < target_batch: + sig = q.get(block=True) + + if sig is None or sig is True: + return False + else: + start += 1 + return True for idx, stage in enumerate(self.search_stage): target_batch = int(total_batch * stage) - while q.get(block=True): - batch += 1 - if batch >= target_batch: - perc = int(stage * 100) - log.info(f"Insert {perc}% done, total batch={total_batch}") - log.info(f"[{batch}/{total_batch}] Serial search - {perc}% start") - recall, ndcg, p99 =self.serial_search_runner.run() - - if idx < len(self.search_stage) - 1: - stage_search_dur = (self.data_volume * (self.search_stage[idx + 1] - stage) // self.insert_rate) // len(self.concurrencies) - if stage_search_dur < 30: - log.warning(f"Search duration too short, please reduce concurrency count or insert rate, or increase dataset volume: dur={stage_search_dur}, concurrencies={len(self.concurrencies)}, insert_rate={self.insert_rate}") - log.info(f"[{batch}/{total_batch}] Conc search - {perc}% start, dur for each conc={stage_search_dur}s") - else: - last_search_dur = self.data_volume * (1.0 - stage) // self.insert_rate - stage_search_dur = last_search_dur + self.read_dur_after_write - log.info(f"[{batch}/{total_batch}] Last conc search - {perc}% start, [read_until_write|read_after_write|total] =[{last_search_dur}s|{self.read_dur_after_write}s|{stage_search_dur}s]") - - max_qps = self.run_by_dur(stage_search_dur) - res.append((perc, max_qps, recall)) - break - return res + perc = int(stage * 100) + + got = wait_next_target(start_batch, target_batch) + if got is False: + log.warning(f"Abnormal exit, target_batch={target_batch}, start_batch={start_batch}") + return + + log.info(f"Insert {perc}% done, total batch={total_batch}") + log.info(f"[{target_batch}/{total_batch}] Serial search - {perc}% start") + res, ssearch_dur = self.serial_search_runner.run() + recall, ndcg, p99_latency = res + log.info(f"[{target_batch}/{total_batch}] Serial search - {perc}% done, recall={recall}, ndcg={ndcg}, p99={p99_latency}, dur={ssearch_dur:.4f}") + + # Search duration for non-last search stage is carefully calculated. + # If duration for each concurrency is less than 30s, runner will raise error. + if idx < len(self.search_stage) - 1: + total_dur_between_stages = self.data_volume * (self.search_stage[idx + 1] - stage) // self.insert_rate + csearch_dur = total_dur_between_stages - ssearch_dur + + # Try to leave room for init process executors + csearch_dur = csearch_dur - 30 if csearch_dur > 60 else csearch_dur + + each_conc_search_dur = csearch_dur / len(self.concurrencies) + if each_conc_search_dur < 30: + warning_msg = f"Results might be inaccurate, duration[{csearch_dur:.4f}] left for conc-search is too short, total available dur={total_dur_between_stages}, serial_search_cost={ssearch_dur}." + log.warning(warning_msg) + + # The last stage + else: + each_conc_search_dur = 60 + + log.info(f"[{target_batch}/{total_batch}] Concurrent search - {perc}% start, dur={each_conc_search_dur:.4f}") + max_qps = self.run_by_dur(each_conc_search_dur) + result.append((perc, max_qps, recall, ndcg, p99_latency)) + + start_batch = target_batch + + # Drain the queue + while q.empty() is False: + q.get(block=True) + return result diff --git a/vectordb_bench/backend/runner/serial_runner.py b/vectordb_bench/backend/runner/serial_runner.py index 9e6818443..13270e21a 100644 --- a/vectordb_bench/backend/runner/serial_runner.py +++ b/vectordb_bench/backend/runner/serial_runner.py @@ -167,7 +167,7 @@ def __init__( self.test_data = test_data self.ground_truth = ground_truth - def search(self, args: tuple[list, pd.DataFrame]): + def search(self, args: tuple[list, pd.DataFrame]) -> tuple[float, float, float]: log.info(f"{mp.current_process().name:14} start search the entire test_data to get recall and latency") with self.db.init(): test_data, ground_truth = args @@ -224,5 +224,11 @@ def _run_in_subprocess(self) -> tuple[float, float]: result = future.result() return result - def run(self) -> tuple[float, float]: + @utils.time_it + def run(self) -> tuple[float, float, float]: + """ + Returns: + tuple[tuple[float, float, float], float]: (avg_recall, avg_ndcg, p99_latency), cost + + """ return self._run_in_subprocess() diff --git a/vectordb_bench/backend/runner/util.py b/vectordb_bench/backend/runner/util.py index 0dfd9d0c4..ba1888167 100644 --- a/vectordb_bench/backend/runner/util.py +++ b/vectordb_bench/backend/runner/util.py @@ -1,6 +1,4 @@ import logging -import concurrent -from typing import Iterable from pandas import DataFrame import numpy as np @@ -16,17 +14,3 @@ def get_data(data_df: DataFrame, normalize: bool) -> tuple[list[list[float]], li else: all_embeddings = emb_np.tolist() return all_embeddings, all_metadata - -def is_futures_completed(futures: Iterable[concurrent.futures.Future], interval) -> (Exception, bool): - try: - list(concurrent.futures.as_completed(futures, timeout=interval)) - except TimeoutError as e: - return e, False - return None, True - - -def get_future_exceptions(futures: Iterable[concurrent.futures.Future]) -> BaseException | None: - for f in futures: - if f.exception() is not None: - return f.exception() - return diff --git a/vectordb_bench/backend/utils.py b/vectordb_bench/backend/utils.py index 690cff3e8..ea11e6461 100644 --- a/vectordb_bench/backend/utils.py +++ b/vectordb_bench/backend/utils.py @@ -35,6 +35,7 @@ def numerize(n) -> str: def time_it(func): + """ returns result and elapsed time""" @wraps(func) def inner(*args, **kwargs): pref = time.perf_counter()