-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_silhouette.py
431 lines (333 loc) · 15.3 KB
/
test_silhouette.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import argparse
import pprint
import tqdm
import pandas as pd
# sys.path.append('configs')
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SequentialSampler
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from models import get_model
from losses import get_loss, get_center_loss
from optimizers import get_optimizer, get_center_optimizer
from schedulers import get_scheduler
from sampler import get_sampler
import utils
from utils.checkpoint import get_checkpoint, load_checkpoint, save_checkpoint
import utils.metrics
from utils import get_initial_test, get_collate_fn, get_gallery_data, evaluation, Evaluator, get_initial
from utils import L2_distance, Vector_module, update_gallery
# change training parameters from py dictionary to
class Test(object):
def __init__(self, config):
self.config = config
self.model = None
self.optimizer = None
self.optimizer_center = None # reserved for center loss
self.scheduler = None
self.writer = None
self.sampler = None
self.loss_function = None
self.center_model = None # reserved for center loss
# self.writer = self.config.writer
self.writer = None
self.data_loader = None
self.dataset = None
self.data_loader_test = None
self.gallery = None
self.collate_fn = None
self.num_epochs = self.config.train.num_epochs
self.num_workers = self.config.data.num_workers
self.sample_type = 'all'
self.last_epoch = 0
self.step = -1
self.more_label = self.load_new_label()
self.iteration = 0
if self.writer is not None:
self.writer = SummaryWriter(self.config.writer)
def initialization(self):
WORK_PATH = self.config.WORK_PATH
os.chdir(WORK_PATH)
os.environ["CUDA_VISIBLE_DEVICES"] = self.config.CUDA_VISIBLE_DEVICES
print("GPU is :",os.environ["CUDA_VISIBLE_DEVICES"] )
# step(optimizer, last_epoch, step_size=80, gamma=0.1, **_):
self.model = get_model(self.config)
self.optimizer = get_optimizer(self.config, self.model.parameters())
checkpoint = get_checkpoint(self.config)
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(self.model)
self.model = self.model.cuda()
self.last_epoch, self.step = load_checkpoint(self.model, self.optimizer, self.center_model, self.optimizer_center, checkpoint)
print("from checkpoint {} last epoch: {}".format(checkpoint, self.last_epoch))
self.collate_fn = get_collate_fn(self.config, self.config.data.frame_num, self.sample_type) #
def load_new_label(self):
data = pd.read_csv("./data/label.csv") # fit right path of "label.csv"
data = data.drop(columns=['ID'])
return data
def find_new_label(self, date, label):
# cloth: normal, coat, skirt: 0,1,2
# activity = walk, phone:0,1
# gender = male, female : 0,1
# carry = no, bag, small, big : 0,1,2,3
# path = straight, curve :0,1
# upper = short, long : 0,1
cloth = []
activity = []
gender = []
carry = []
path = []
# print('label ',self.more_label)
for i in range(len(date)):
value = self.more_label.loc[(self.more_label['id'] == label[i]) & (self.more_label['date'] == date[i]) ].values[0]
# print(value)
# print(label)
# print(date)
# print(self.more_label)
cloth.append(value[0])
activity.append(value[1])
gender.append(value[2])
carry.append(value[3])
path.append(value[4])
cloth = np.asarray(cloth)
activity = np.asarray(activity)
gender = np.asarray(gender)
carry = np.asarray(carry)
path = np.asarray(path)
# print(cloth)
return cloth,activity,gender,carry,path
def pose_build_batch(self, mat_data):
len_mat = mat_data.shape[1]
if len_mat < self.config.data.frame_num:
mat_data = np.pad(mat_data, ((0, 0), (0, self.config.data.frame_num - len_mat)), 'constant', constant_values = 0)
data = torch.unsqueeze(torch.from_numpy(mat_data),0)
else:
j = 0
data = torch.unsqueeze(torch.from_numpy(mat_data[:, j:j+self.config.data.frame_num]), 0)
j += 10
while j + self.config.data.frame_num < len_mat:
data_temp = torch.unsqueeze(torch.from_numpy(mat_data[:, j:j+self.config.data.frame_num]), 0)
j += 10
data = torch.cat([data, data_temp], 0)
data = data.float().cuda()
fc, pre = self.model(data)
feature = torch.mean(fc, 0)
return feature
def extract_gallery_feature(self, data_gallery, len_gallery):
features = list()
if self.config.data.name == "pose":
for i in range(len_gallery):
mat_i = data_gallery[i]
fc = self.pose_build_batch(mat_i) # return the mean feature
feat = fc.view(1, -1).data.cpu().numpy()
n = 1
for ii in range(n):
feat[ii] = feat[ii] / np.linalg.norm(feat[ii])
features.append(feat)
else:
for i in range(len_gallery):
# print("len gallery = ", len(data_gallery), " ", len(data_gallery[i], " ", len(data_gallery[i][0])))
if type(data_gallery) is np.ndarray:
seq = data_gallery[i]
else:
seq = data_gallery[i].values
seq = torch.from_numpy(np.asarray(seq))
seq = torch.unsqueeze(seq, 0)
# seq = [torch.Tensor(seq[i]).float().cuda() for i in range(len(seq))]
fc, out, out_cloth, out_activity, out_gender, out_carry, out_path = self.model(seq)
n, num_bin = fc.size()
feat = fc.view(n, -1).data.cpu().numpy()
# if needing normalization
for ii in range(n):
feat[ii] = feat[ii] / np.linalg.norm(feat[ii])
features.append(feat)
return features
# For drawing the gender ROC_EER.
# please check the file at "./utils/ROC_EER.py"
def save_gender(self, gender_list, label_list):
np.save(os.path.join(self.config.train.dir, "gender.npy"), gender_list)
np.save(os.path.join(self.config.train.dir, "label.npy"), label_list)
print("save success!!" )
def run(self):
# checkpoint
self.model = self.model.eval()
self.dataset, test_gallery = get_initial_test(self.config, test=True) # return dataset instance
print("data set len is :",len(self.dataset))
data_gallery, date_gallery, label_gallery = test_gallery[0], test_gallery[1], test_gallery[2]
print("----------->",self.config.test.sampler)
# define dataloader
if self.config.test.sampler != 'seq':
print(" sampler is video level")
self.data_loader = DataLoader(
dataset=self.dataset,
batch_size= 1,
sampler=SequentialSampler(self.dataset),
collate_fn=self.collate_fn,
num_workers=self.num_workers)
else:
print(" sampler is seq level")
self.data_loader = DataLoader(
dataset=self.dataset,
batch_size=self.config.train.batch_size.batch1,
collate_fn=self.collate_fn,
num_workers=self.num_workers,
drop_last=False,
shuffle=True,
)
data_gallery, date_gallery, label_gallery = update_gallery(data_gallery, date_gallery, label_gallery,
frame_num=32, overlap_per=0.4)
len_gallery = len(label_gallery)
feature_gallery = self.extract_gallery_feature(data_gallery, len_gallery)
probe_feature = list()
probe_date = list()
probe_label = list()
# saved data
gender_save = []
label_save = []
# because in pose_based experiment, the batch samples are random, we circle 50 times to balance that.
epoch = 1
iterater = range(epoch)
if self.config.test.sampler == "seq":
epoch = 100
iterater = tqdm.tqdm(range(epoch))
print("epoch is :",epoch)
for kk in iterater:
final_label = []
final_date = []
pre_cloth = []
pre_activity = []
pre_gender = []
pre_carry = []
pre_path = []
label_cloth = []
label_activity = []
label_gender = []
label_carry = []
label_path = []
for seq, date, label, _ in self.data_loader:
# generate new label
cloth, activity, gender, carry, path = self.find_new_label(date, label)
label_cloth.extend(cloth)
label_activity.extend(activity)
label_gender.extend(gender)
label_carry.extend(carry)
label_path.extend(path)
seq = torch.from_numpy(seq).float().cuda()
# print(seq.size())
fc, out, out_cloth, out_activity, out_gender, out_carry, out_path = self.model(seq)
# print("out shape =", out.size())
pre_cloth.extend(torch.max(out_cloth, 1)[1].detach().cpu().numpy())
pre_activity.extend(torch.max(out_activity,1)[1].detach().cpu().numpy())
pre_gender.extend(torch.max(out_gender, 1)[1].detach().cpu().numpy())
pre_carry.extend(torch.max(out_carry, 1)[1].detach().cpu().numpy())
pre_path.extend(torch.max(out_path, 1)[1].detach().cpu().numpy())
gender_probability= F.softmax(out_gender, dim=1)
gender_temp = gender_probability.detach().cpu().numpy()[:,0]
temp_value = np.average(gender_temp)
gender_save.append(temp_value)
label_save.append(gender[0])
n, num_bin = fc.size()
feat = fc.view(n, -1).data.cpu().numpy()
for ii in range(n):
feat[ii] = feat[ii] / np.linalg.norm(feat[ii])
probe_feature.append(feat)
probe_label += label
probe_date += date
def transform_to_numpy(temp):
return np.asarray(temp)
pre_cloth, pre_activity, pre_gender, pre_carry,pre_path, label_cloth, label_activity, label_gender,label_carry, label_path = map(transform_to_numpy,[pre_cloth, pre_activity, pre_gender, pre_carry,
pre_path,label_cloth,label_activity, label_gender,
label_carry, label_path])
acc_cloth = np.sum(pre_cloth == label_cloth) / float(len(label_cloth))
acc_activity = np.sum(pre_activity == label_activity) / float(len(label_cloth))
acc_gender = np.sum(pre_gender == label_gender) / float(len(label_cloth))
acc_carry = np.sum(pre_carry == label_carry) / float(len(label_cloth))
acc_path = np.sum(pre_path == label_path) / float(len(label_cloth))
def to_list(pre, label):
result = []
for i in range(len(pre)):
if pre[i] == label[i]:
result.append(0)
else:
result.append(1)
return result
cloth_list = to_list(pre_cloth, label_cloth)
activity_list = to_list(pre_activity, label_activity)
gender_list = to_list(pre_gender, label_gender)
self.write_txt(probe_label, probe_date,date_gallery, label_gallery,cloth_list, activity_list, gender_list)
print('acc_cloth', acc_cloth, 'acc_activity', acc_activity, 'acc_gender',acc_gender,'acc_carry',acc_carry,'acc_path',acc_path)
gender_save = np.asarray(gender_save)
label_save = np.asarray(label_save)
# self.save_gender(gender_save, label_save)
test_gallery = feature_gallery, date_gallery, label_gallery
test_probe = np.concatenate(probe_feature, 0), probe_date, probe_label
evaluation = Evaluator(test_gallery, test_probe, self.config)
return evaluation.run()
def write_txt(self, label, date, gallery, gallery_label,cloth, activity,gender , temp = "soft"):
file = None
if self.config.test.result_save:
txt_path = os.path.join(self.config.train.dir, temp+'.txt')
print(txt_path)
file = open(txt_path, "w")
for i in range(len(label)):
temp = gallery[gallery_label.index(label[i])]
# print(temp)
str_str = str(label[i]) + "," + str(date[i]) + "," + str(temp) + "," + str(cloth[i]) + "," + str(activity[i])+ ","+ str(gender[i])+"\n"
file.write(str_str)
if file is not None:
file.close()
print("write success!!")
def inference(self):
pass
def parse_args():
parser = argparse.ArgumentParser(description='config file')
# # transformer
parser.add_argument('--config', dest='config_file',
help='configuration filename',
default="./configs/YOUR_CONFIG.yml", type=str)
parser.add_argument('--epoch', dest='epoch',
help='epoch',
default="749", type=str)
parser.add_argument('--GPU_num', dest='GPU_num',
help='GPU number',
default="0", type=str)
return parser.parse_args()
def main():
args = parse_args()
if args.config_file is None:
raise Exception("no configuration file.")
config = utils.config.load(args.config_file)
config.train.dir = os.path.join(config.train.dir, os.path.basename(args.config_file)[:-4])
if args.epoch is not None:
config.test.epoch = int(args.epoch)
print("Epoch ", config.test.epoch)
if args.GPU_num is not None:
config.CUDA_VISIBLE_DEVICES = args.GPU_num
print("GPU is ", config.CUDA_VISIBLE_DEVICES)
# config.if_train = False # True or False
print(config.train.dir)
trainer = Test(config)
trainer.initialization()
right_probe_top1 = 0
right_probe_top5 = 0
num_probe = 0
if config.test.gallery_model == "random":
# in random model, cycle the entire process 50 times
for i in range(10):
right_probe_top1_, right_probe_top5_, num_probe_ = trainer.run()
right_probe_top1 += right_probe_top1_
right_probe_top5 += right_probe_top5_
num_probe += num_probe_
print("\n \n the top1 accuracy is : {}%, \nthe rank 5 accuracy is {}%. ".format(right_probe_top1 * 100.0 / num_probe,
right_probe_top5 * 100.0 / num_probe))
else:
_, _, _ = trainer.run()
print("Finishing Test!")
if __name__ == '__main__':
main()