-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrainer.py
256 lines (219 loc) · 8.77 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import copy
import datetime
import json
import logging
import os
import sys
import time
import torch
from utils import factory
from utils.data_manager import DataManager
from utils.toolkit import ConfigEncoder, count_parameters, save_fc, save_model
def train(args):
seed_list = copy.deepcopy(args["seed"])
device = copy.deepcopy(args["device"])
for seed in seed_list:
args["seed"] = seed
args["device"] = device
_train(args)
def _train(args):
time_str = datetime.datetime.now().strftime('%m%d-%H-%M-%S-%f')[:-3]
args['time_str'] = time_str
init_cls = 0 if args ["init_cls"] == args["increment"] else args["init_cls"]
exp_name = "{}_{}_{}_{}_B{}_Inc{}".format(
args["time_str"],
args["dataset"],
args["convnet_type"],
args["seed"],
init_cls,
args["increment"],
)
args['exp_name'] = exp_name
if args['debug']:
logfilename = "logs/debug/{}/{}/{}/{}".format(
args["prefix"],
args["dataset"],
args["model_name"],
args["exp_name"]
)
else:
logfilename = "logs/{}/{}/{}/{}".format(
args["prefix"],
args["dataset"],
args["model_name"],
args["exp_name"]
)
args['logfilename'] = logfilename
csv_name = "{}_{}_{}_B{}_Inc{}".format(
args["dataset"],
args["seed"],
args["convnet_type"],
init_cls,
args["increment"],
)
args['csv_name'] = csv_name
os.makedirs(logfilename, exist_ok=True)
log_path = os.path.join(args["logfilename"], "main.log")
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(filename)s] => %(message)s",
handlers=[
logging.FileHandler(filename=log_path),
logging.StreamHandler(sys.stdout),
],
)
logging.info(f"Time Str >>> {args['time_str']}")
# save config
config_filepath = os.path.join(args["logfilename"], 'configs.json')
with open(config_filepath, "w") as fd:
json.dump(args, fd, indent=2, sort_keys=True, cls=ConfigEncoder)
_set_random()
_set_device(args)
print_args(args)
data_manager = DataManager(
args["dataset"],
args["shuffle"],
args["seed"],
args["init_cls"],
args["increment"],
)
model = factory.get_model(args["model_name"], args)
cnn_curve, nme_curve, no_nme = {"top1": [], "top5": []}, {"top1": [], "top5": []}, True
start_time = time.time()
logging.info(f"Start time:{start_time}")
for task in range(data_manager.nb_tasks):
logging.info("All params: {}".format(count_parameters(model._network)))
logging.info(
"Trainable params: {}".format(count_parameters(model._network, True))
)
model.incremental_train(data_manager)
if task == data_manager.nb_tasks-1:
cnn_accy, nme_accy = model.eval_task(save_conf=True)
no_nme = True if nme_accy is None else False
else:
cnn_accy, nme_accy = model.eval_task(save_conf=False)
model.after_task()
if nme_accy is not None:
logging.info("CNN: {}".format(cnn_accy["grouped"]))
logging.info("NME: {}".format(nme_accy["grouped"]))
cnn_curve["top1"].append(cnn_accy["top1"])
cnn_curve["top5"].append(cnn_accy["top5"])
nme_curve["top1"].append(nme_accy["top1"])
nme_curve["top5"].append(nme_accy["top5"])
logging.info("CNN top1 curve: {}".format(cnn_curve["top1"]))
logging.info("CNN top5 curve: {}".format(cnn_curve["top5"]))
logging.info("NME top1 curve: {}".format(nme_curve["top1"]))
logging.info("NME top5 curve: {}\n".format(nme_curve["top5"]))
else:
logging.info("No NME accuracy.")
logging.info("CNN: {}".format(cnn_accy["grouped"]))
cnn_curve["top1"].append(cnn_accy["top1"])
cnn_curve["top5"].append(cnn_accy["top5"])
logging.info("CNN top1 curve: {}".format(cnn_curve["top1"]))
logging.info("CNN top5 curve: {}\n".format(cnn_curve["top5"]))
end_time = time.time()
logging.info(f"End Time:{end_time}")
cost_time = end_time - start_time
save_time(args, cost_time)
save_results(args, cnn_curve, nme_curve, no_nme)
if args['model_name'] not in ["podnet", "coil"]:
save_fc(args, model)
else:
save_model(args, model)
def _set_device(args):
device_type = args["device"]
gpus = []
for device in device_type:
if device_type == -1:
device = torch.device("cpu")
else:
device = torch.device("cuda:{}".format(device))
gpus.append(device)
args["device"] = gpus
def _set_random():
torch.manual_seed(1)
torch.cuda.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info("{}: {}".format(key, value))
def save_time(args, cost_time):
_log_dir = os.path.join("./results/", "times", f"{args['prefix']}")
os.makedirs(_log_dir, exist_ok=True)
_log_path = os.path.join(_log_dir, f"{args['csv_name']}.csv")
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']}, {cost_time} \n")
def save_results(args, cnn_curve, nme_curve, no_nme=False):
cnn_top1, cnn_top5 = cnn_curve["top1"], cnn_curve['top5']
nme_top1, nme_top5 = nme_curve["top1"], nme_curve['top5']
#-------CNN TOP1----------
_log_dir = os.path.join("./results/", f"{args['prefix']}", "cnn_top1")
os.makedirs(_log_dir, exist_ok=True)
_log_path = os.path.join(_log_dir, f"{args['csv_name']}.csv")
if args['prefix'] == 'benchmark':
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},")
for _acc in cnn_top1[:-1]:
f.write(f"{_acc},")
f.write(f"{cnn_top1[-1]} \n")
else:
assert args['prefix'] in ['fair', 'auc']
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},{args['memory_size']},")
for _acc in cnn_top1[:-1]:
f.write(f"{_acc},")
f.write(f"{cnn_top1[-1]} \n")
#-------CNN TOP5----------
_log_dir = os.path.join("./results/", f"{args['prefix']}", "cnn_top5")
os.makedirs(_log_dir, exist_ok=True)
_log_path = os.path.join(_log_dir, f"{args['csv_name']}.csv")
if args['prefix'] == 'benchmark':
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},")
for _acc in cnn_top5[:-1]:
f.write(f"{_acc},")
f.write(f"{cnn_top5[-1]} \n")
else:
assert args['prefix'] in ['auc', 'fair']
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},{args['memory_size']},")
for _acc in cnn_top5[:-1]:
f.write(f"{_acc},")
f.write(f"{cnn_top5[-1]} \n")
#-------NME TOP1----------
if no_nme is False:
_log_dir = os.path.join("./results/", f"{args['prefix']}", "nme_top1")
os.makedirs(_log_dir, exist_ok=True)
_log_path = os.path.join(_log_dir, f"{args['csv_name']}.csv")
if args['prefix'] == 'benchmark':
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},")
for _acc in nme_top1[:-1]:
f.write(f"{_acc},")
f.write(f"{nme_top1[-1]} \n")
else:
assert args['prefix'] in ['fair', 'auc']
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},{args['memory_size']},")
for _acc in nme_top1[:-1]:
f.write(f"{_acc},")
f.write(f"{nme_top1[-1]} \n")
#-------NME TOP5----------
_log_dir = os.path.join("./results/", f"{args['prefix']}", "nme_top5")
os.makedirs(_log_dir, exist_ok=True)
_log_path = os.path.join(_log_dir, f"{args['csv_name']}.csv")
if args['prefix'] == 'benchmark':
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},")
for _acc in nme_top5[:-1]:
f.write(f"{_acc},")
f.write(f"{nme_top5[-1]} \n")
else:
assert args['prefix'] in ['auc', 'fair']
with open(_log_path, "a+") as f:
f.write(f"{args['time_str']},{args['model_name']},{args['memory_size']},")
for _acc in nme_top5[:-1]:
f.write(f"{_acc},")
f.write(f"{nme_top5[-1]} \n")